基于区间参数的水电机组振动传导研究

职保平12,周志琦12,李颖2,张宏战3

振动与冲击 ›› 2017, Vol. 36 ›› Issue (7) : 21-25.

PDF(784 KB)
PDF(784 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (7) : 21-25.
论文

基于区间参数的水电机组振动传导研究

  • 职保平12,周志琦12,李颖2,张宏战3
作者信息 +

Vibration path transmissibility analysis for hydropower stations based on interval parameters

  • ZHI Baoping1,2,ZHOU Zhiqi1,2,LI Ying2,ZHANG Hongzhan3
Author information +
文章历史 +

摘要

在建立的伞式混流式水轮发电机组振动完善模型的基础上,引入各参数的区间性,结合区间算法和随机摄动理论,推导了水电机组各传导路径的传导力及传导率的上、下限和均值的计算表达式,建立了具有区间参数的水电机组-厂房耦合系统的振动传导分析方法。通过算例,分析了结构参数不确定性对传导率的影响,验证了模型和方法的合理性与可行性。该方法能够反映参数不确定时振动传导路径传递率的范围及敏感性等问题,为全面分析水电机组振动传递特性提供理论基础和数据支撑。

Abstract

The vibration model of an umbrella type mixed-flow turbine generator set was established.The computational expressions for the lower bond,the upper one and the mean value of conduction force and transmission rate of each conduction path were derived using the interval factor method and the random perturbation theory.The vibration path trans-missibility analysis method was established for a hydro-power unit-work shop coupled system with interval parameters.With an example,the effects of the uncertainty of structural parameters on the transmission rate were analyzed,the rationality and feasibility of the model and method presented here were verified.It was shown that this method is able to determine the range and sensitivity of the vibration path transmissibility.The results provided a theoretical basis and a data support for a comprehensive analysis of a hydropower unit’s vibration transfer characteristics.

关键词

区间参数 / 随机参数结构 / 传导路径 / 水电站

Key words

interval parameters / stochastic perturbation method / transfer path / hydropower station

引用本文

导出引用
职保平12,周志琦12,李颖2,张宏战3. 基于区间参数的水电机组振动传导研究[J]. 振动与冲击, 2017, 36(7): 21-25
ZHI Baoping1,2,ZHOU Zhiqi1,2,LI Ying2,ZHANG Hongzhan3. Vibration path transmissibility analysis for hydropower stations based on interval parameters[J]. Journal of Vibration and Shock, 2017, 36(7): 21-25

参考文献

[1] 黄剑峰,张立翔,王文全,姚激. 混流式水轮机三维非定常流分离涡模型的精细模拟[J]. 中国电机工程学报, 2011, 31(26):83-89.
[2] Xiao Y X, Wang Z W, Zhang J, Luo Y Y. Numerical predictions of pressure pulses in a Francis pump turbine with misaligned guide vanes [J]. Journal of Hydrodynamics, 2014, 26(2):250-256.
[3] 王海军,练继建,杨敏,王日宣. 混流式水轮机轴向动荷载识别[J]. 振动与冲击, 2007, 26(4):123-125.
Wang H J, Lian J J, Yang M, Wang R X. Francis turbine axial dynamic load identification [J]. Journal of Vibration and Shock. 2007, 26(4):123-125. ( in Chinese)
[4] 孔达,李忠刚,焦映厚,陈照波. 水轮机转子-密封系统模型及其非线性动力学特性分析[J]. 水力发电学报,2013,44(4): 462-469.
Da Hong, Zhonggang Li, Yinghou Jiao, Zhaopo Chen. Models of the rotor-seal system for hydraulic turbine and its nonlinear dynamics analysis [J]. Journal of Hydroelectric Engineering, 2013,44(4): 462-469. ( in Chinese)
[5] 宋志强,刘云贺. 考虑电磁刚度的水电机组转子轴承系统弯扭耦合振动研究 [J]. 水力发电学报,  2014, 33(6):224-231.
Song Z Q, Liu Y H. Investigation of bending-torsional coupled vibration of hydro generators rotor-bearing system considering electromagnetic stiffness [J]. Journal of Hydroelectric Engineering, 2014, 33(6): 224-231.  (in Chinese)
[6] 李兆军,蔡敢为,杨旭娟, 蓝永庭. 混流式水轮发电机组主轴系统非线性全局耦合动力模型[J]. 机械强度, 2008, 30(2):175-183.
Li Z J, Cai G W, Yang X J, Lan Y T. Nonlinear Global Coupling Equations of a Main Shaft System of Hydraulic Turbine-Generator Units [J]. Journal of Mechanical Strength, 2008, 30(2):175-183. (in Chinese)
[7] Song Z Q, Chen J, Ma Z Y. Coupling between the lateral bending and axial vibrations of a water turbine generator set shaft system through thrust bearing [J]. Journal of Hydroelectric Engineering, 2010,6:149-155.
[8] 徐伟,马震岳,职保平. 基于功率流理论的大型水电站厂房结构脉动压力频响分析[J]. 水利学报,  2012, 05:615-622.
Wei X, Ma Z Y, Zhi B P. Analysis on frequency response to pulsating pressure in large hydropower house based on the theory of power flow [J]. Journal of Hydraulic Engineering, 2012, 39(5):615-622. (in Chinese)
[9] 马震岳,董毓新. 水电站机组及厂房振动的研究与治理[M]. 北京:中国水利水电出版社, 2004.
Ma Z Y, Dong Y X. Vibration and its Corrective Actions of Water Turbine Generator Set and Power House [M]. Beijing: China Water Power Press. 2004. (in Chinese)
[10] Zhi B P, Ma Z Y. Research on the hydraulic turbine vertical vibration power flow in the head cover system [C]. The 26th IAHR Symposium on Hydraulic Machinery and Systems, IOP Conference Series: Earth and Environmental Science, 15(PART 4), Beijing, China, 2012.
[11] 徐伟,马震岳,职保平. 水压脉动能量传导对水电站厂房墙体影响分析 [J]. 水力发电学报,  2013, 32(2): 233-239.
Wei X, Ma Z Y, Zhi B P. Analysis on power flow transmission of pressure fluctuation along the walls of hydropower house [J]. Journal of Hydroelectric Engineering, 2013, 32(2): 233-239. (in Chinese)
[12] Dai Z, Keating E, Gable C, Levitt D, Heikoop J, Simmons A. Stepwise inversion of a groundwater flow model with multi-scale observation data [J]. Hydrogeology Journal, 2010, 18(3):607-624.
[13] Xiao N, Muhanna R L, Fedele F, Mullen R L. Uncertainty Analysis of Static Plane Problems by Intervals [J]. Sae International Journal of Materials & Manufacturing, 2015, 8(2).
[14] Gao W, Zhang Z, Ji H, Zhou Y, Liu Q. Optimal quasi-periodic preventive maintenance policies for a repairable system with stochastic maintenance interval [J]. Eksploatacja i Niezawodnosc- Maintenance and Reliability, 2015, 17(3):389-397.
[15] Chowdhury M S, Song C, Gao W, Wang C. Reliability analysis of homogeneous and biomaterial cracked structures by the scaled boundary finite element method and a hybrid random-interval model [J]. Structural Safety, 2016: 59, 53-66.
[16] 郭书祥, 吕震宙. 区间运算和静力区间有限元[J]. 应用数学和力学, 2001, 22(12): 1249-1254.
Guo S X, Lv Z Y. Interval arithmetic and static interval finite element method [J]. Applied mathematics and mechanics, 2001, 22(12): 1249-1254. (in Chinese)
[17] 职保平, 马震岳, 吴嵌嵌. 考虑顶盖系统的水轮机竖向振动传递路径分析[J]. 水力发电学报, 2013, 32(3):241-246.
Zhi B P, Ma Z Y, Wu Q Q. Research on the turbine vertical vibration transfer paths in the head cover system [J]. Journal of hydroelectric power, 2013, 32(3):241-246

PDF(784 KB)

646

Accesses

0

Citation

Detail

段落导航
相关文章

/