基于原型测量的极地航行船舶船体冰载荷分析

刘瀛昊1,佟福山1,高良田1

振动与冲击 ›› 2017, Vol. 36 ›› Issue (7) : 226-233.

PDF(2236 KB)
PDF(2236 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (7) : 226-233.
论文

基于原型测量的极地航行船舶船体冰载荷分析

  • 刘瀛昊1,佟福山1,高良田1
作者信息 +

Ice-induced load analysis for hull of an ice-going vessel based on full-scale measurement

  • LIU Yinghao,TONG Fushan,GAO Liangtian
Author information +
文章历史 +

摘要

船体与海冰碰撞引起的冰载荷一直是破冰船领域研究的重点。本文根据S.A. AgulhasⅡ号极地科考补给船在南极海域的原型测量数据,利用影响系数矩阵法和反演法对船体艉肩部的冰载荷进行分析。通过肋骨上不同应变传感器测得的剪应变,在MATLAB中利用系数矩阵转换,得到了不同肋骨上的冰载荷。通过建立艉肩部有限元模型,采用两种不同的离散方式对载荷区域进行离散,并利用Thickhonov正则化求解反演方程,得到外板的冰载荷分布。本文克服了数据处理过程中解的不适定性,两种方法得到的计算结果也极为相近。

Abstract

The ice-induced load on a ship hull is a key point in the study field of icebreaker.Based on the full-scale measurement data  here,the influence coefficient matrix method and the inverse method were applied to analyze the ice load on the stern shoulder  area of the polar supply and research vessel S.A.AgulhasⅡ.The ice loads on different frames were therefore obtained by transforming the shear strain data measured with sensors attached on those frames and using the coefficient matrix in MATLAB.To get the ice load distribution,the finite element model in the stern shoulder area was built and two different discretization methods were used to discrete the load area.Tikhonov regularization was employed to solve the inverse equation,the ice load distribution on the outside plate was gained.The results showed that the two methods proposed can lead to similar solutions and overcome the ill-posed nature of solutions during data processing.

关键词

冰载荷 / 原型测量 / 影响系数矩阵法 / 反演法 / Thickhonov正则化

Key words

ice-induced load / full-scaled measurement / influence coefficient matrix method / inverse method / Tikhonov regularization

引用本文

导出引用
刘瀛昊1,佟福山1,高良田1. 基于原型测量的极地航行船舶船体冰载荷分析[J]. 振动与冲击, 2017, 36(7): 226-233
LIU Yinghao,TONG Fushan,GAO Liangtian. Ice-induced load analysis for hull of an ice-going vessel based on full-scale measurement[J]. Journal of Vibration and Shock, 2017, 36(7): 226-233

参考文献

[1] Soal K and Bekker A. Whole-body vibration comfort on the S.A. Agulhas Ⅱ polar supply and research vessel during a voyage to antarctica[C]//48th UK Group Meeting on Human Responses to Vibration. Ascot, United Kingdom, 2013.
[2] Sillitoe A, Upcraft D, Rich K, et al. Supporting human performance in ice and cold conditions[R]. London: Lloyd’s Register, 2010.
[3] 李勇,史庆增,宋安.海冰静力作用的特点及几种典型结构的冰力模拟实验[J].海洋学报,1994,16(6): 133-141.
   LI Yong, SHI Qing-zeng, SONG An. The static mechanical properties of sea ice and ice force experiment of several typical structures[J]. Acta Oceanologica Sinica, 1994,16(6): 133-141.
[4] Han X, Liu J, Li W J. A computational inverse technique for reconstruction of multi-source loads in time domain[J]. Acta Mechanica Sinica, 2009, 41(4):595-602.
[5] Pezerat C, Guyader J L. Two inverse methods for localization of external sources exciting a beam[J]. Acta Acustica, 1995, 3(1): 1-10.
[6] Uhl T. The inverse identification problem and its technical[J]. Archive of Applied Mechanics, 2007, 77(5):325-337.
[7] 智浩,文祥荣,缪龙秀等. 动态载荷的频域识别方法[J]. 北方交通大学学报,2000, 24(4): 5-10.
    ZHI Hao, WEN Xiang-rong, MIAO Long-xiu, et al. Dynamic loading identification in frequency domain[J]. Journal of Northern Jiaotong University, 2000, 24(4): 5-10.
[8] Sun X S, Liu J, Han X, et al. A new improved regularization method for dynamic load identification[J]. Inverse Problems in Science and Engineering, 2013, 22(7): 1062-1076.
[9] Liu J, Sun X S, Han X, et al. A novel computational inverse technique for load identification using the shape function method of moving least square fitting[J]. Computers and Structures, 2014, 144:127-137.
[10] Liu J, Meng X H, Jiang C, et al. Time-domain Galerkin method for dynamic load identification[J]. International Journal for Numerical Methods in Engineering, 2015, 105(8): 620-640.
[11] 朱涛. 高速列车载荷反演技术及其运用研究[D]. 成都:西南交通大学,2012.
    ZHU Tao. Load identification technology for high-speed train dynamic force and its application[D]. Chengdu: Southwest Jiaotong University, 2012.
[12] Rompanen A. Inverse load sensing method for line load determination of beam-like structures[D]. Finland: Tampere University of Technology, 2008.
[13] Suominen M, Kujala P. Measured ice loads and design ice loads[C]//4th International Conference on Marine Structures. Espoo, Finland, 2013.
[14] Bekker A, Suominen M, Peltokorpi O, et al. Full-scale measurements on a polar supply and research vessel during maneuver tests in an ice field in the Baltic Sea[C]//33rd International Conference on Ocean, Offshore and Arctic Engineering. San Francisco, California, USA ,2014.
[15] Riska K, Kujala P, Vuorio J. Ice Load and Pressure measurements onboard IB Sisu[C]//POAC’83, Espoo, Finland, 1983:1055-1069.
[16] Maattanen M, Marjavaara P, Saarinen S, et al. Ice Crushing Tests with Variable Structural Flexibility[J]. Cold Regions Science and Technology, 2011, 67:120-128.
[17]Thickhonov A, Arsenin V. Solution of Ill-Posed Problems[M]. Washington, DC :Winston and Sons, 1977.
[18] Inoue H, Harrigan J, Reid S. Review of Inverse Analysis for Indirect Measurement of Impact Force[J]. Applied Mechanics Reviews, 2011, 54(6): 503-524.

PDF(2236 KB)

421

Accesses

0

Citation

Detail

段落导航
相关文章

/