针对弹性高超声速飞行器纵向短周期系统,提出一种基于预设性能的backstepping控制器设计方法。将弹性模态作为系统的不确定性,利用全局调节动态神经网络进行在线逼近,引入鲁棒项处理神经网络估计误差带来的影响;将预设性能控制与backstepping技术相结合,引入性能函数的概念,利用误差转化函数将原受限系统转化为等价的非受限系统,然后基于Lyapunov理论设计全状态预设性能backstepping控制器,保证了高超声速飞行器纵向短周期系统误差全状态满足预设的瞬态和稳态性能,理论分析证明了系统的稳定性和闭环系统所有信号均有界,最后仿真分析验证了提出方法的正确性。
Abstract
Aiming at the longitudinal dynamic model of an elastic hypersonic vehicle,the short period subsystem controller ws designed using prescribed performance control and the backstepping technique.The elastic modes were taken as the uncertainties of the system,the online approaching was conducted using the fully tuned dynamic neural network and the influences of estimation errors of the neural network were dealed with by introducing the robust term.The prescribed performance control was combined with the backstepping technique,the performance function and the error conversion function were introduced to convert the original ‘constrained’ system into an equivalent ‘unconstrained’ one.The fully states prescribed performance backstepping controller was designed based on Lyapunov theory,it was proved that the system is stable and all the signals are bounded according to the theoretical analysis; all error states of the longitudinal short period subsystem of the typersonic vehicle satisfy the prescribed transient state and steady state performances.The simulation results demonstrated the correctness of the proposed method.
关键词
弹性 /
高超声速飞行器 /
预设性能 /
神经网络
{{custom_keyword}} /
Key words
elasticity /
hypersonic vehicle /
prescribed performance /
neural network
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]Sigthorsson D O, Jankovsky P, Serrani A, et al. Robust linear output feedback control of an airbreathing hypersonic vehicle. Journal of Guidance, Control, and Dynamics, 2008, 31(4):1052-1066.
[2]Xu H J, Mirmirani M, Ioannou P A. Robust neural adaptive control of a hypersonic aircraft. AIAA-2003-5641, 2003.
[3]Wallner E M, Well K H, Nonlinear flight control design for the X-38 using CMAC neural networks. AIAA-2001-4042, 2001.
[4]Kuipers M, Mirmirani M, Ioannou P, et al. Adaptive control of an aeroelastic airbreathing hypersonic cruise vehicle.AIAA-2007-6326,2007.
[5]Adami T A, Zhu J J.Control of a flexible hypersonic scramjet vehicle using a differential algebraic approach[R]. AIAA 2008-7464, 2008.
[6]Fiorentini L, Serrani A, Bolender M A,et al. Nonlinear robust/adaptive controller design for an air-breathing hypersonic vehicle model[R]. AIAA 2007-6329, 2007.
[7]Jankovsky P, Sigthorsson D O, Serrani A, et al. Output feedback control and sensor placement for a hypersonic vehicle model[R]. AIAA 2007-6327, 2007.
[8]Kuipers M, Mirmirani M, Ioannou P, et al. Adaptive control of an aeroelastic airbreathing hypersonic cruise vehicle[R]. AIAA 2007-6326, 2007.
[9]Heeg J, Gilbert M G, Pototzky A S. Active control of aerothermoelastic effects for a conceptual hypersonic cruise vehicle[R]. AIAA 2007-3337, 1990.
[10]BECHLIOULIS C P,ROVITHAKIS G A. Prescribed performance adaptive control of SISO feedback linearizable systems with disturbances[C]. 16th Mediterranean Conference on Control & Automation(MED). Ajaccio,France:IEEE,2008:1035-1040.
[11]Jason T. Parker∗, Michael A. Bolender, David B. Doman. Control-Oriented Modeling of an Air-Breathing Hypersonic Vehicle[J]. Guidance, Control, and Dynamics, 2007, 30(3): 856-868.
[12]Levant J T, Serrani A, Yurkovich S, et al. Control-Oriented Modeling of an Air-Breathing Hypersonic Vehicle[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(3): 856-869.
[13]胡云安,晋玉强,张友安,崔平远.基于神经网络的严反馈块非线性系统的鲁棒控制[J].控制与决策,2004,19(7):808-812.
Hu Yunan, Jin Yuqiang, Zhang Youan, Cui PingYuan. NN-based robust control for strict-feedback block nonlinear systems[J]. Control and Decision, 2004, 19(7):808-812.
[14]晋玉强.导弹非线性自适应控制系统设计[D].烟台:海军航空工程学院,2003.
Jin Yuqiang. Design of nonlinear adaptive control system for missile[D]. Yantai: Naval Aeronautical Engineering Institute, 2003.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}