周期矩形轮廓声学散射体的散射性质预测算法及其应用研究

王海涛,曾向阳,杜博凯,刘延善

振动与冲击 ›› 2017, Vol. 36 ›› Issue (7) : 80-85.

PDF(981 KB)
PDF(981 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (7) : 80-85.
论文

周期矩形轮廓声学散射体的散射性质预测算法及其应用研究

  • 王海涛,曾向阳,杜博凯,刘延善
作者信息 +

Predicting scattering properties of a periodic-type diffuser with a rectangular profile

  • WANG Haitao,ZENG Xiangyang,DU Bokai,LIU Yanshan
Author information +
文章历史 +

摘要

具有周期排列形式的散射体是建筑声学中一种常见的声学扩散结构,针对各种室内环境中最为常见的周期矩形轮廓散射体,基于光栅方程发展了一种散射性质预测算法,并利用此方法对矩形轮廓散射体的散射性质进行了预测及分析。首先详细介绍了预测算法的推导过程,此算法仅利用散射体的几何参数及入射波参数即可计算各个阶次反射波的能量,从而对散射性质进行预测;然后,通过对不同算例散射系数的计算及对比证明了预测算法具有良好的正确性及计算效率;最后,利用预测算法对周期矩形轮廓散射体的散射性质进行了分析,分析表明其具有缺级散射、对称散射性质,这些性质不但可以使周期矩形轮廓散射体在室内声学扩散问题中得到更加合理的应用,还使其有潜力在其他领域,如噪声控制、空间滤波等问题中发挥重要的作用。

Abstract

The periodic-type diffuser is a kind of important acoustical structures in architectures.It is usually beneficial to improve diffusion and prevent echoes.However,sometimes it also leads to side effects of coloration because of its periodically arranged structure.Here,a grating effect-based method was developed to predict scattering properties of a periodic-type diffuser with a rectangular profile most widely used in room acoustics.Firstly,the derivation of the grating effect-based method was introduced in detail.This method was capable of calculating the scattering energy of reflection waves using the geometrical parameters of the diffuser without time-consuming numerical simulations.Then,the calculation and comparison of scattering coefficients in examples showed that the proposed method has a good accuracy to predict scattering properties.Lastly,the scattering properties of the periodic-type diffuser with a rectangular profile were analyzed using the grating effect-based method.The results demonstrated that the periodic-type diffuser with a  rectangular profile has properties of missing order scattering and symmetric scattering; based on these special properties,the periodic-type diffuser with a rectangular profile can not only be more reasonably used in room acoustics,but also play an important role in other engineering fields,such as,spatial filtering,spectrum control,and noise control.

关键词

周期散射体 / 矩形轮廓 / 散射系数 / 缺级散射 / 对称散射

Key words

periodic type diffuser / rectangular profile / scattering coefficient / missing order scattering / symmetrical scattering

引用本文

导出引用
王海涛,曾向阳,杜博凯,刘延善. 周期矩形轮廓声学散射体的散射性质预测算法及其应用研究[J]. 振动与冲击, 2017, 36(7): 80-85
WANG Haitao,ZENG Xiangyang,DU Bokai,LIU Yanshan. Predicting scattering properties of a periodic-type diffuser with a rectangular profile[J]. Journal of Vibration and Shock, 2017, 36(7): 80-85

参考文献

[1] Beranek L L. Music, acoustics & architecture[M]. New York: Wiley, 1962.
[2] Beranek L L. How They Sound: Concert and Opera Halls[M]. New York: Acoustical Society of American, 1996.
[3] 王季卿. 声场扩散与厅堂音质[J]. 声学学报, 2001, 26(5): 417-421.
Wang J Q. Sound diffusion and auditorium acoustics[J]. Acta Acustica, 2001, 26(5): 417-421.
[4] 乐意, 赵其昌, 沈勇, 孙广荣, 杨小军. 大型厅堂的建筑声学设计方法研究[J]. 南京大学学报(自然科学), 2011, 47(2): 208-217.
Le Y, Zhao Q C, Shen Y, Sun G R, Yang X J. Study on the acoustic design of large auditoriums[J]. Journal of Nanjing University(Natural Sciences), 2011, 47(2): 208-217.
[5] 陈荣, 吴天行. 非对称周期结构中耦合波的传播特性[J]. 振动与冲击, 2015, 34(1): 68-73.
Chen R, Wu T X. Coupled wave propagation in asymmetric periodic structures[J]. Journal of Vibration and Shock, 2015, 34(1): 68-73.
[6] 蒋国荣. 室内声场模拟中的界面声散射[J]. 声学技术, 2009, 28(6): 697-700.
Jiang G R. Sound scattering in room acoustic modeling[J]. Technical Acoustics, 2009, 28(6): 697- 700.
[7] 刘海生, 龚农斌. 室内声学中散射研究进展[J]. 应用声学, 2005, 24(2): 126-132.
Liu H S, Gong N B. Progress in diffusers researches in room acoustics[J]. Applied Acoustics(Chinese), 2005, 24(2): 126-132.
[8] Rayleigh J W. The Theory of Sound[M]. New York: Dover, 1945.
[9] Wirgin A. Reflection from a corrugated surface[J]. J. Acoust. Soc. Am., 1980, 68(2): 692-699.
[10] Chesneaux J M, Wirgin A. Reflection from a corrugated surface revisited[J]. J. Acoust. Soc. Am., 1994, 96(2): 1116-1129.
[11] Kosaka Y, Sakumay T. Numerical examination on scattering coefficients of architectural surfaces using the boundary element method[J]. Acoust. Sci. & Tech., 2005, 26(2): 136-144.
[12] Sakamoto S, Mukai H, Tachibana H. Numerical study on sound absorption characteristics of resonance-type brick/block walls[J]. J. Acoust. Soc. Jpn., 2000, 21(1): 9-15.
[13] Embrechts J J, Geetere L D, Vermeir G, Vorländer M, Sakuma T. Calculation of the random incidence scattering coefficients of a sine-shaped surface[J]. Acta Acust. Acust., 2006, 92(4): 593-603.
[14] Mommertz E. Determination of scattering coefficients from the reflection directivity of architectural surface[J]. Appl. Acoust., 2000, 60(2): 201-203.
[15] 李鸿秋, 陈国平, 史宝军. 多联通封闭空间声场响应的基于核重构的最小二乘无网格解法[J]. 振动与冲击, 2012, 31(8): 148-163.
Li H Q, Chen G P, Shi B J. Acoustic response in multi- domain based on least- square point collocation method and reproducing kernel particle method[J]. Journal of Vibration and Shock, 2012, 31(8): 148-163.
[16] 王海涛, 曾向阳. 周期结构声散射系数的无网格数值计算方法[J]. 计算物理, 2013, 30(2): 229-236.
Wang H T, Zeng X Y. Meshless models for numerical calculation of scattering coefficients of periodic structures[J]. Chinese Journal of Computational physics, 2013, 30(2): 229-236.
[17] Choi Y J. Effects of periodic type diffusers on classroom acoustics[J]. Appl. Acoust., 2013, 74(5): 694-707.
[18] Holford R L. Scattering of sound waves at the ocean surface: a diffraction theory[J]. J. Acoust. Soc. Am., 1981, 70: 1103-1115.
[19] Holford R L. Scattering of sound waves at a periodic, pressure-release surface: An exact solution[J]. J. Acoust. Soc. Am., 1981, 70(4): 1116-1128.
[20] Choi Y J, Jeong D U, Kim J Y, Some issues in measurement of the random-incidence scattering coefficients in a reverberation room, in proceedings of ACOUSTICS 2006. 2006: Christchurch, New Zealand.
[21] Lee H, Sakuma T. Numerical characterization of acoustic scattering coefficients of one-dimensional periodic surfaces[J]. Appl. Acoust., 2015, 88: 129-136.
[22] 张雄, 刘岩. 无网格法[M]. 北京: 清华大学出版社, 2004.
Zhang X, Liu Y. Meshless method[M]. Beijing: Tsinghua Press, 2004.

PDF(981 KB)

Accesses

Citation

Detail

段落导航
相关文章

/