以某民机机翼跨音速颤振模型为研究对象,采用N-S方程求解固定边界流场的气动力,简化的跨音速小扰动方程求解运动边界流场的气动力,结合结构动力学的模态分析结果进行颤振特性分析。模型风洞试验前完成所有计算工作,试验后通过比较表明,计算结果与试验结果吻合:(1)颤振频率一致;(2)颤振速度随马赫数的变化趋势一致;(3)跨音速凹坑的底部位置一致;(4)颤振速度的偏差最大不超过10%,且在马赫数0.60和0.70处,偏差小于1%。由此可见该计算方法的计算精度高,可以用于风洞试验结果的预判,提升风洞试验结果的可信度和风洞试验的效率,也可以作为民机适航符合性验证的一种手段。
Abstract
A transonic flutter model of a civil plane wing was investigated.The aerodynamic force in a flow field with fixed boundary was solved with N-S equations.The aerodynamic force in a flow field with moving boundary was solved with the simplified transonic small disturbance equations.The flutter characteristics were studied by combining the modal analysis results of structural dynamics and the aerodynamic force.The numerical simulations of flutter were finished before the model wind tunnel tests.Ater tests,the comparisons showed that the numerical results agree well with the test data; the calculated flutter frequencies are close to the those of test data; the flutter speed varies with Mach number,the flutter speed of the former and that of the latter have the same trend; the bottom positions of transonic pits measured and calculated agree well; the flutter speed difference between simulation and test is less than 10%,and less than 1% when Mach number is 0.60 or 0.70; the numerical method has a high accuracy,it can be used to predict wind tunnel tests’ results,and improve the reliability and the efficiency of wind tunnel tests; the method can also be a means of the compliance verification of civil aviation air worthness.
关键词
跨音速颤振 /
风洞试验 /
频域计算方法 /
CFD计算 /
适航验证
{{custom_keyword}} /
Key words
transonic flutter /
wind tunnel test /
frequency domain method /
computational fluid dynamics(CFD) /
airworthiness compliance
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 梁 技,杨 飞,杨智春. 现代民用飞机气动弹性模型低速风洞试验适航符合性验证技术研究[J]. 振动与冲击,2013, 32(12): 1-6.
LIANG Ji, YANG Fei, YANG Zhi-chun. Airworthiness compliance validating technique for wind tunnel test of a civil aircraft low speed flutter model. [J]. Journal of Vibration and Shock, 2013, 32(12): 1-6.
[2] 梁 技,杨 飞,杨智春. 气动扰流对飞机T型尾翼跨音速颤振影响的试验研究[J]. 振动与冲击,2013, 32(1):94-98.
LIANG Ji, YANG Fei, YANG Zhi-chun. Influence of flow disturb on transonic flutter characteristic of an aircraft T-Tail. [J]. Journal of Vibration and Shock, 2013, 32(1): 94-98.
[3] 孙亚军,梁 技,杨 飞,等. 超临界机翼跨音速颤振风洞试验研究[J]. 振动与冲击,2014, 33(4): 190-194.
SUN Ya-jun, LIANG Ji, YANG Fei, et al. Transonic flutter wind tunnel tests for an aircraft with a supercritical wing. [J]. Journal of Vibration and Shock, 2014, 33(4): 190-194.
[4] 钱 卫,杨国伟,张桂江,等. 某全机跨声速颤振模型颤振特性仿真与试验验证[J]. 空气动力学学报,2014, 32(3): 364-368.
QIAN Wei, YANG Guowei, ZHANG Guijiang, et al. Flutter characteristic simulation and experimental verification for transonic flutter model of a whole aircraft. [J]. Acta Aerodynamica Sinica, 2014, 32(3): 364-368.
[5] Schuster D M, Liu D D, Huttsell L J. Computational aeroelasticity: success, progress, challenge. [C]. AIAA-2003-1725, 2003.
[6] Hong M S, Kuruvila G, Bhatia K G, et al. Evaluation of CFL3D for unsteady pressure and flutter predictions. [C]. AIAA-2003-1923, 2003.
[7] 史爱明,杨永年,叶正寅. 两种跨声速气动弹性问题分析研究[J]. 空气动力学学报,2005, 23(4): 414-418.
SHI Ai-ming, YANG Yong-nian, YE Zheng-yin. Investigation of two aeroelasticity problems in transonic flow. [J]. Acta Aerodynamica Sinica, 2005, 23(4): 414-418.
[8] 杨国伟. 计算气动弹性若干研究进展[J]. 力学进展,2009, 39(4): 406-420.
YANG Guo-wei. Rencent progress on computational aeroelasticity. [J]. Advances in mechanics, 2009, 39(4): 406-420.
[9] 杨国伟,钱 卫. 飞行器跨声速气动弹性数值分析[J]. 力学学报,2005, 37(6): 769-776.
YANG Guo-wei, QIAN Wei. Numerical analysis of transonic flutter on an aircraft. [J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(6): 769-776.
[10] ZAERO theoretical manual [M]. USA ZONA Technology, Inc, 2008:1-4.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}