浮式风机变桨故障后停机的动力特性研究

丁红岩 1,2,3, 韩彦青 3,张浦阳 1,2,3,乐丛欢 1,2,3

振动与冲击 ›› 2017, Vol. 36 ›› Issue (8) : 125-131.

PDF(1303 KB)
PDF(1303 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (8) : 125-131.
论文

浮式风机变桨故障后停机的动力特性研究

  • 丁红岩 1,2,3, 韩彦青 3,张浦阳 1,2,3,乐丛欢 1,2,3
作者信息 +

Dynamic analysis of floating wind turbine in blade pitch fault followed by shutdown

  • DING Hongyan1,2,3,HAN Yanqing3,ZHANG Puyang1,2,3,LE Conghuan1,2,3
Author information +
文章历史 +

摘要

浮式风机变桨故障后紧急顺桨停机可能会引起风机传动系统、机舱设备、塔筒和浮式基础荷载和弯矩的巨大波动。本文采用空气动力-水动力-控制系统-结构动力全耦合非线性方法模拟了不同海况下的全潜式浮式风机变桨系统故障,分析了风机低速轴弯矩、机舱加速度、塔筒弯矩和浮式基础的运动响应变化。结果表明,在变桨故障后紧急顺桨停机工况下,风机系统内部所受荷载和弯矩与正常运行相比有明显增加,在优化控制方法后,即变桨故障后高速轴刹车并减速顺桨,风机系统内部增加的荷载和弯矩得到有效缓解。

Abstract

Floating wind turbine blade pitch fault followed by emergency shutdown may cause large loads fluctuation in wind turbine drivetrain,nacelle,tower,and support structures.Coupled non-linear aero-hydro-servo-elastic simulations of a submersible platform supported floating wind turbine were carried out for blade pitch fault cases over a range of environmental conditions.The loads and moments in low-speed shaft,nacelle,tow-top,tow-base and the motions of floating platform were investigated.The results show that loads and moments in the wind turbine system increase significantly in blade pitch fault followed by emergency shutdown condition comparing to the normal operation phase.However,the increases of the loads and moments are effectively remitted using the optimized control methods of blade pitch fault followed by high-speed shaft brake and low-speed feathering. 

关键词

浮式风机 / 变桨系统故障 / 空气动力-水动力-控制系统-结构动力分析 / 控制方法

Key words

floating wind turbine / blade pitch fault / aero-hydro-servo-elastic simulations / control method

引用本文

导出引用
丁红岩 1,2,3, 韩彦青 3,张浦阳 1,2,3,乐丛欢 1,2,3. 浮式风机变桨故障后停机的动力特性研究[J]. 振动与冲击, 2017, 36(8): 125-131
DING Hongyan1,2,3, HAN Yanqing3, ZHANGDING Hongyan1,2,3,HAN Yanqing3,ZHANG Puyang1,2,3,LE Conghuan1,2,3 Puyang1,2,3, LE Conghuan1,2,3. Dynamic analysis of floating wind turbine in blade pitch fault followed by shutdown[J]. Journal of Vibration and Shock, 2017, 36(8): 125-131

参考文献

[1] 丁红岩, 翟少华, 张浦阳. 海上风电大尺度顶承式筒型基础承载力特性有限元分析[J]. 工程力学, 2013, 30(6):124-132.
Ding Hongyan, Zhai Shaohua, Zhang Puyang. Finite element analysis of bearing capacity behavior of cover-load-bearing large-scale bucket foundation for offshore wind turbines[J]. Engineering Mechanics, 2013, 30(6): 124-132.
[2] Liu Run, Zhou Long, Lian Jijian, Ding Hongyan. Behavior of Monopile Foundations for Offshore Wind Farms in Sand[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 04015010.
[3] B.Byrne, G. Houlsby. Foundations for offshore wind turbines[J], Philosophical Transactions of the Royal Society of London A: Mathematical,Physical and Engineering Sciences, 361 (2003) 2909-2930.
[4] Stiesdal H. Hywind: The world’s first floating MW-scale wind turbine[J]. Wind Directions, 2009: 52-53.
[5] D Roddier, C Cermelli, A Aubault, et al. WindFloat: A floating foundation for offshore wind turbines[J], Journal of Renewable and Sustainable Energy, 2 (2010) 033104.
[6] Bachynski E E, Moan T. Design considerations for tension leg platform wind turbines[J]. Marine Structures 29 (1), 89-114.
[7] Nielsen F G, Hanson T D, Skaare B. Integrated dynamic analysis of floating offshore wind turbines[C]//Proceedings of OMAE 25th International Conference on Offshore Mechanics and Arctic Engineering.Hamburg, Germany, 2006.
[8] Etemaddar M, Gao Z, Moan T. Structural load analysis of a wind turbine under pitch actuator and controller faults[J]. Journal of Physics: Conference Series. IOP Publishing, 2014, 555(1): 012034.
[9] Jiang Z, Karimirad M, Moan T. Dynamic response analysis of wind turbines under blade pitch system fault, grid loss, and shutdown events[J]. Wind Energy, 2014, 17(9): 1385-1409.
[10] 王磊, 何玉林, 金鑫,等. 漂浮式海上风电机组动力学仿真分析[J]. 中南大学学报(自然科学版), 2012, 43(4):1309-1314.
WANG Lei, HE Yulin, JIN Xin,et al. Dynamic simulation analysis of floating wind turbine[J]. Journal of Central South University (Science and Technology) , 2012, 43(4):1309-1314.
[11] 安利强, 孙少华, 周邢银. 发电机故障时海上风电机组动态特性分析[J]. 动力工程学报, 2014, 34(11):891-896.
An Liqiang, Shun Shaohua, Zhou Xingyin. Analysis on Dynamic Characteristics of Offshore Wind Turbines with Generator Faults[J]. Journal of Chinese Society of Power Engineering, 2014, 34(11):891-896.
 [12] 鲁效平, 李伟, 林勇刚, 等. 漂浮式海上风力发电机组独立变桨距控制技术研究[J]. 太阳能学报, 2012, 33(4): 600-608.
Lu Xiaoping, Li Wei, Lin Yonggang, et al. Research on the individual pitch control of floating offshore wind turbines[J]. Acta Energiae Solaris Sinica, 2012, 33(4): 600-608.
[13] 李嘉文. 新型海上风机浮式基础设计与风机系统耦合动力分析[D]. 天津:天津大学,2014.
Li Jiawen. A new floating platform design and the coupled dynamic analysis of the offshore wind turbine system[D]. Tianjin:Tianjin University, 2014.
[14] Bachynski E E. Design and dynamic analysis of tension leg platform wind turbines[D]. Trondheim: Norwegian University of Science and Technology, 2014.
[15] Jonkman J M, Butterfield S, Musial W, et al. Definition of a 5-MW reference wind turbine for offshore system development[R]. Colorado, USA: National Renewable Energy Laboratory, 2009.
[16] Matha D. Model Development and Loads Analysis of an Offshore Wind Turbine on a Tension Leg Platform with a Comparison to Other Floating Turbine Concepts: April 2009[R]. National Renewable Energy Laboratory (NREL), Golden, Colorado, 2010.
[17] Jonkman J M. Dynamics of offshore floating wind turbines model development and verification[J]. Wind Energy, 2009, 12(5): 459-492.
[18] Jonkman J M, Buhl Jr M L. FAST User’s Guide [R]. National Renewable Energy Laboratory (NREL), Golden, Colorado, 2005.
[19] 茂诗, 韩花丽, 杨微. 兆瓦级风电机组紧急停机过程载荷分析及优化[J]. 风能, 2015(1): 92-95.
Mao shi, Han Huali, Yang Wei. Load analysis and optimization in emergency shutdown of MW scale wind turbine[J]. Wind Energy, 2015(1): 92-95.

PDF(1303 KB)

Accesses

Citation

Detail

段落导航
相关文章

/