不同温度下裂纹悬臂梁的模态和疲劳寿命分析

马一江 1,陈国平 1

振动与冲击 ›› 2017, Vol. 36 ›› Issue (8) : 132-137.

PDF(1263 KB)
PDF(1263 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (8) : 132-137.
论文

不同温度下裂纹悬臂梁的模态和疲劳寿命分析

  • 马一江 1 , 陈国平 1
作者信息 +

Modal and fatigue life analysis of a cracked cantilever beam under different temperatures

  • MA Yijiang,CHEN Guoping
Author information +
文章历史 +

摘要

基于扭转弹簧模型和修正Paris公式,提出了一种在不同外界温度下含初始裂纹悬臂梁的疲劳寿命估算方法。在模态分析过程中,通过弹性模量引入温度模块,利用扭转弹簧等效该裂纹,将悬臂梁转化为由扭转弹簧联接的两段弹性梁;推导出不同温度下含裂纹梁固有振型的特征方程,分析温度和裂纹几何参数对裂纹梁固有频率的影响。在疲劳寿命分析过程中,利用复弹性模量引入阻尼损耗因子,基于修正Paris方程和同步分析法,考虑裂纹梁振动与疲劳裂纹扩展的相互作用,分析温度、阻尼和悬臂梁根部区域裂纹几何参数对裂纹梁疲劳寿命的影响。结果表明:随着裂纹相对位置的减小以及裂纹相对深度的增大,裂纹悬臂梁的固有频率和疲劳寿命则逐渐降低;而外界温度的升高也会导致裂纹悬臂梁固有频率和疲劳寿命的降低;同时随着阻尼损耗因子的逐渐增大,裂纹悬臂梁的疲劳寿命也会逐渐增加。

Abstract

Based on the torsion spring model and the modified Paris formula,an analytical method was proposed to predict the fatigue life of a cantilever beam with an initial crack under different external temperatures.In the modal analysis process,the temperature module was introduced through the elastic modulus,and the cracked cantilever beam was transformed to two intact elastic beams by using a torsion spring to replace the crack segment; An inherent vibration characteristic equation of the cracked beam would be deduced under different temperatures,and effects of temperatures and crack geometric parameters on the frequency of the cracked beam would be analyzed.In the fatigue life analysis process,the damping loss factor was introduced through the complex elastic modulus.Considering the interaction of the cracked beam vibration and the fatigue crack growth,effects of temperatures,dampings and crack geometric parameters on the fatigue life of the cracked beam would be analyzed based on the modified Paris formula and the timing analysis method.Results indicate: the natural frequency and fatigue life of the cracked cantilever beam gradually decrease with the decreased relative position and the increased relative depth of the crack.And the increase of external temperature leads to the decrease of the natural frequency and fatigue life of the cracked cantilever beam.The fatigue life of the cracked beam gradually increases with the increased damping loss factor. 

关键词

裂纹
/ 悬臂梁 / 扭转弹簧 / 温度 / 振动疲劳

Key words

crack
/ cantilever beam / torsion spring / temperature / vibration and fatigue

引用本文

导出引用
马一江 1,陈国平 1. 不同温度下裂纹悬臂梁的模态和疲劳寿命分析[J]. 振动与冲击, 2017, 36(8): 132-137
MA Yijiang,CHEN Guoping. Modal and fatigue life analysis of a cracked cantilever beam under different temperatures[J]. Journal of Vibration and Shock, 2017, 36(8): 132-137

参考文献

[1] Ponomarev P V, Lopatin A D. Calculation of the fatigue fracture under the influence of dynamic loads[J]. International Applied Mechanics, 1972, 8(6): 613-617.
[2] Shih Y S, Wu G Y. Effect of vibration on fatigue crack growth of an edge crack for a rectangular plate[J]. International journal of fatigue, 2002, 24(5): 557-566.
[3] Schlums D H. Fatigue testing and crack analysis of resonating structures[D]. Technical University of Braunschweig, 2001.
[4] Papaeconomou N, Dimarogonas A. Vibration of cracked beams[J]. Computational mechanics, 1989, 5(2-3): 88-94.
[5] Chen J, Takezono S, Tao K, et al. Application of fracture mechanics to the surface crack propagation in stainless steel at elevated temperatures[J]. Acta Materialia, 1997, 45(6):2495–2500.
[6] 王振清, 刘兵, 韩玉来. 高温下含裂纹铝合金梁自由振动频率分析[J]. 哈尔滨工程大学学报, 2012, 33(3):320-324.
Wang Z Q, Liu B, Han Yu Lai. Free vibration frequency variation analysis of a cracked aluminum alloy beam under temperatures[J]. Journal of Harbin Engineering University, 2012, 33(3):320-324. (in Chinese)
[7] Dentsoras A J, Dimarogonas A D. Fatigue crack propagation in resonating structures[J]. Engineering fracture mechanics, 1989, 34(3): 721-728.
[8] Paris P C, Erdogan F. A critical analysis of crack propagation laws[J]. Journal of Fluids Engineering, 1963, 85(4): 528-533.
[9] Dentsoras A J, Kouvaritakis E P. Effects of vibration frequency on fatigue crack propagation of a polymer at resonance[J]. Engineering fracture mechanics, 1995, 50(4): 467-473.
[10] 刘文光, 陈国平. 含裂纹悬臂梁的振动与疲劳耦合分析[J]. 振动与冲击, 2011, 30(5): 140-144.
Liu W G, Chen G P. Coupling analysis for vibration and fatigue of a cracked cantilever beam[J].Journal of Vibration and Shock, 2011, 30(5): 140-144. (in Chinese)
[11] Okamura H, Liu H W, Chu C S, et al. A cracked column under compression[J]. Engineering Fracture Mechanics, 1969, 1(3):547-564.
[12] 王振清,韩玉来,王永军等。火灾场冲击波荷载作用下简支钢梁动力响应[J]。振动与冲击,2007,26(4):69-72.
Wang Z Q, Han Y L, Wang Y J, Su J. Dynamic response of a steel beam simply supported under shock wave in fire field[J]. Journal of Vibration and Shock, 2007, 26(4): 69-72. (in Chinese)
[13] 李国强,蒋首超,林桂祥。钢结构抗火计算与设计[M]。北京:中国建筑工业出版社,1999:75-98.
Li G Q, Jiang S C, Lin G X. Calculation and design of steel structure fire resistance[M]. Beijing: China Architecture and Building Press, 1999: 75-98. (in Chinese)
[14] 丁锡洪. 结构力学[M]. 航空工业, 1991.
Ding X H. Structural mechanics [M]. Aviation Industry Press, 1991. (in Chinese)
[15] Tada H, Paris P C, Irwin G R. The Stress Analysis of Cracks Handbook[M]. Del Research Corporation Hellertown, Pennsylvania, 1973.
[16] Speidel M O. Fatigue behaviour of a gold-nickel alloy[J]. Gold Bulletin, 1979, 12(4):145-148.
[17] Dentsoras A J, Dimarogonas A D. Resonance controlled fatigue crack propagation in a beam under longitudinal vibrations[J]. International journal of fracture, 1983, 23(1): 15-22.

PDF(1263 KB)

Accesses

Citation

Detail

段落导航
相关文章

/