带挠性附件卫星转动惯量的在轨辨识

兰聪超1,谭述君1,吴志刚1,2,李文博3,4

振动与冲击 ›› 2017, Vol. 36 ›› Issue (8) : 16-21.

PDF(812 KB)
PDF(812 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (8) : 16-21.
论文

带挠性附件卫星转动惯量的在轨辨识

  • 兰聪超1 ,谭述君1,吴志刚1,2,李文博3,4
作者信息 +

On-orbit identification of moments of inertia for satellites with flexible appendages

  • LAN Congchao1, TAN Shujun1, WU Zhigang1,2, LI Wenbo3,4
Author information +
文章历史 +

摘要

针对大型卫星的挠性附件振动会影响质量特性参数辨识精度和准确性的问题,提出了带挠性附件卫星转动惯量参数在轨辨识的递推算法。首先基于带挠性附件卫星动力学模型,导出了转动惯量参数辨识的最小二乘描述形式;然后与挠性附件振动模态估计的卡尔曼滤波算法相结合,提出了一种适用于带挠性附件卫星转动惯量参数辨识的并发递推算法;最后通过仿真算例验证了卫星挠性附件振动对转动惯量参数辨识的影响和文中递推算法的有效性。

Abstract

Considering the effects of flexible vibration on identification accuracy of mass-property parameters,a new recursive algorithm for on-orbit identification of the moments of inertia for satellites with flexible appendages was proposed in this paper.Firstly,based on the dynamic models of satellites with flexible appendages,the least square description for identification of the moments of inertia was proposed.Then,combining the Kalman filter algorithm for estimating the modal parameters of the flexible appendages,a concurrent recursive algorithm for identification of the moments of inertia for satellites with flexible appendages was presented.Finally,simulation examples demonstrated the influence of vibrations of the flexible appendages on the identification of moments of inertia,and the effectiveness of the proposed concurrent recursive algorithm.

关键词

卫星 / 转动惯量 / 参数辨识 / 递推算法 / 挠性附件

Key words

satellite / moment of inertia / parameters identification / recursive algorithm / flexible appendages

引用本文

导出引用
兰聪超1,谭述君1,吴志刚1,2,李文博3,4. 带挠性附件卫星转动惯量的在轨辨识[J]. 振动与冲击, 2017, 36(8): 16-21
LAN Congchao1, TAN Shujun1, WU Zhigang1,2, LI Wenbo3,4. On-orbit identification of moments of inertia for satellites with flexible appendages[J]. Journal of Vibration and Shock, 2017, 36(8): 16-21

参考文献

[1] Mohan S, Miller D W. Operational impact of mass property update for on-orbit assembly[C]. AIAA SpaceOps2006 Conference, Rome, Italy, AIAA. 2006, 5658: 19-23.
[2] Bergmann E V, Walker B K, Levy D R. Mass property estimation for control of asymmetrical satellites [J].  Journal of Guidance, Control, and Dynamics, 1987, 10(5): 483-491.
[3] Bergmann E, Dzielski J. Spacecraft mass property identification with torque-generating control [J]. Journal of Guidance, Control, and Dynamics, 1990, 13(1): 99-103.
[4] Tanygin S, Williams T. Mass property estimation using coasting maneuvers [J]. Journal of Guidance, Control, and Dynamics, 1997, 20(4): 625-632.
[5] Lee A Y, Wertz J A. In-flight estimation of the Cassini spacecraft's inertia tensor [J]. Journal of spacecraft and rockets, 2002, 39(1): 153-155.
[6]  Vreeburg J P B. Sloshsat spacecraft calibration at stationary spin rates [J]. Journal of Spacecraft and Rockets, 2008, 45(1): 65-75.
[7] Wilson E, Suttera D W, Mahb R W. MCRLS for On-line Spacecraft Mass-and Thruster-Property Identification [J]. Parameters, 2004, 446(155): 324.
[8] Wilson E, Sutter D W, Mah R W. Multiple concurrent recursive least squares identification [C]. Proc. IASTED International Conference on Intelligent Systems and Control. 2004.
[9] 王书廷, 曹喜滨. 卫星质量特性的在线辨识算法研究 [C]. 第 25 届中国控制会议,黑龙江,哈尔滨,2006.
WANG Shu-ting, CAO Xi-bin, On-line mass-property identification algorithm research for satellite [C]. 25th Chinese Control Conference, Harbin, Heilongjiang, 2006.
[10] 徐文福, 何勇, 王学谦, 等. 航天器质量特性参数的在轨辨识方法[J]. 宇航学报, 2010, 31(8): 1906-1914.
XU Wen-fu, HE yong, WANG Xue-qian, et al. On orbit identification of mass characteristic parameters for spacecraft [J]. Journal of Astronautics, 2010, 31(8): 1906-1914.
[11] 黄河, 周军, 刘莹莹. 航天器转动惯量在线辨识[J]. 系统仿真学报, 2010, 22(5): 1117-1120.
HUANG he, ZHOU Jun, LIU Ying-ying, On-line identification of spacecraft moment of inertia, [J]. Journal of System Simulation, 2010, 22(5): 1117-1120.
[12] 骆剑, 肖余之, 陈健, 等. 动力学在航天器中的若干应用[J]. 振动与冲击, 2002, 21(4): 53-58.
LUO Jian, XIAO Yu-zhi, CHEN Jian, et,al. Applications of dynamics in the design area of spacecraft [J]. Journal of Vibration and Shock, 2002, 21(4): 53-58.
[13] Gale A H, Likins P W. Influence of flexible appendages on dual-spin spacecraft dynamics and control  [J]. Journal of Spacecraft and Rockets, 1970, 7(9): 1049-1056.
[14] Juang J N, Cooper J E, Wright J R. An eigensystem realization algorithm using data correlations (ERA/DC) for modal parameter identification [C]. Union College, International Modal Analysis Conference, 5 th, London, England. 1987.
[15] Adachi S, Yamaguchi I, Kida T, et al. On-orbit system identification experiments on Engineering Test Satellite-VI[J]. Control Engineering Practice, 1999, 7(7): 831-841.
[16] Kasai T, Yamaguchi I, Igawa H, et al. On-Orbit System Identification Experiments of the Engineering Test Satellite-VIII [J]. Transactions of the Japan Society for Aeronautical and Space Science, Space Technology, 2009, 7(26): 79- 84.
[17] 杨利芳, 于开平, 庞世伟, 等. 用于线性时变结构系统辨识的子空间方法比较研究[J]. 振动与冲击, 2007, 26(3): 8-12.
YANG Li-fang, YU Kai-ping, PANG Shi-wei, et, al. Comparison study on identification methods applied to linear time-varying structures [J]. Journal of Vibration and Shock, 2007, 26(3): 8-12.
[18] 倪智宇, 吴志刚. 线性时变系统的状态空间模型递推辨识研究[J]. 振动与冲击, 2016, 35: (4):8-14.
NI Zhi-yu, WU Zhi-gang. Recursive identification for state space model of a linear time-varying system [J]. Journal of Vibration and Shock, 2016, 35: (4):8-14.
[19] 周思达, 刘莉, 杨武, 等. 基于矩阵分式多项式时变结构模态参数最小二乘辨识[J]. 振动与冲击, 2014, 33(6): 118-123.
ZHOU Si-da, LIU Li, Yang Wu, et al. Matrix fraction polynomial model-based least square estimation of modal parameters for linear time-varying structures [J]. Journal of Vibration and Shock, 2014, 33(6): 118-123.
[20] 张嘉钟, 魏英杰, 曹伟. 飞行器动力学与控制[M]. 哈尔滨工业大学出版社, 2011.
ZHANG Jia-zhong, WEI Ying-jie, CAO Wei. Dynamics and Control of Astronautic Vehicle [M]. Harbin: Harbin Institute of Technology Press, 2011.

PDF(812 KB)

Accesses

Citation

Detail

段落导航
相关文章

/