微分求积模拟二维流体中流函数约束的施加方法研究

王 通1, 何 涛1,3,曹曙阳2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (8) : 173-178.

PDF(684 KB)
PDF(684 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (8) : 173-178.
论文

微分求积模拟二维流体中流函数约束的施加方法研究

  • 王  通1, 何  涛1,3,曹曙阳2
作者信息 +

Methods on applying stream-function restraints in differential quadrature modelling of two-dimensional flow

  • WANG Tong1,HE Tao1,3,CAO Shuyang2
Author information +
文章历史 +

摘要

采用微分求积法数值求解流函数-涡度方程来模拟二维流体时会遇到流函数的超约束问题,即虽然流函数方程为二阶偏微分方程,但在每个固体边界上都存在两个约束条件:一个Dirichlet条件和一个Neumann条件。以二维驱动方腔流动为例,对该问题进行深入分析,进而提出一种新的超约束处理方法,即在边界涡度的计算中考虑Neumann条件,而仅将Dirichlet条件施加于流函数方程。数值结果显示该方法可行,且计算效率较高。同时给出前人提出的单层法和双层法进行比较。试算表明单层法对于网格数的奇偶性很敏感,不适于处理本文问题。对比本文方法与双层法发现:前者计算精度较高,且由于回避了超约束问题而更加方便于使用。
 

Abstract

The 2D lid-driven cavity flow was simulated by applying the differential quadrature method to solve the stream function-vorticity equations.There were two boundary conditions,one Dirichlet and one Neumann,for the stream function equation at each solid boundary though the stream function equation was just second order.Analysis on this over- specified problem was carried out,based on which a new applying method was proposed: the Neumann condition was considered in calculating the vorticity at the boundary while only the Dirichlet condition was applied in the stream function equation.Validity of this method was verified by comparing its numerical results with benchmark data.Two other existing methods,the one-layer approach and the two-layer approach were shown as contrasts.Trial calculations indicate that the one-layer approach is sensitive to the parity of grid numbers and is not suitable for the present problem.Comparisons between the new method and the two-layer approach show that the former is not only more accurate but also more convenient to be used in practice for avoiding the over-specified problem.

关键词

微分求积;流函数-涡度方程;方腔流;边界条件;超约束 

Key words

differential quadrature method / stream function-vorticity equations / cavity flow / boundary condition / over-specified

引用本文

导出引用
王 通1, 何 涛1,3,曹曙阳2. 微分求积模拟二维流体中流函数约束的施加方法研究[J]. 振动与冲击, 2017, 36(8): 173-178
WANG Tong1,HE Tao1,3,CAO Shuyang2. Methods on applying stream-function restraints in differential quadrature modelling of two-dimensional flow[J]. Journal of Vibration and Shock, 2017, 36(8): 173-178

参考文献

[1] Bellman R E, Casti J. Differential quadrature and long-term integration [J]. Journal of Mathematical Analysis and Applications, 1971, 34(2): 235–238.
[2] Bert C W, Malik M. Differential quadrature method in computational mechanics: a review [J]. Applied Mechanics Reviews, 1996, 49(1): 1–28.
[3] Shu C. Differential quadrature and its application in engineering [M]. London: Springer, 2000.
[4] 程昌钧, 朱正佑. 微分求积方法及其在力学应用中的若干新进展 [J]. 上海大学学报(自然科学版), 2009, 15(6): 551–559.
CHENG Chang-jun, ZHU Zheng-you. Recent advances in differential quadrature method with applications to mechanics [J]. Journal of Shanghai University (Natural Science Edition), 2009, 15(6): 551–559.
[5] 李鸿晶, 王通. 结构地震反应分析的逐步微分积分方法 [J]. 力学学报, 2011, 43(2): 430–435.
LI Hong-jing, WANG Tong. A time-stepping method of seismic response analysis for structures using differential quadrature rule [J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(2): 430–435.
[6] 武吉梅, 陈媛, 王砚, 等. 基于微分求积法的印刷运动薄膜动力稳定性分析 [J]. 振动与冲击, 2015, 34(20): 57–60.
WU Ji-mei, CHEN Yuan, WANG Yan et al. Study of kinetic stability for membrane based on differential quadrature method [J]. Journal of Vibration and Shock, 2015, 34(20): 57–60.
[7] 董宇, 杨翊仁, 鲁丽. 基于微分求积法的轴向流作用下二维板复杂响应研究 [J]. 振动与冲击, 2015, 34(6): 46–51.
DONG Yu,YANG Yi-ren,LU Li. On the complicated responses of a two-dimensional plate in axial liquid flow by differential quadrature method [J]. Journal of Vibration and Shock, 2015, 34(6): 46–51.
[8] Ghia U, Ghia K N, Shin C T. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method [J]. Journal of Computational Physics, 1982, 48(3): 387–411.
[9] Striz A G, Chen W. Application of the differential quadrature method to the driven cavity flow problem [J]. International Journal of Non-Linear Mechanics, 1994, 29(5): 665–670.
[10] Shu C, Wang L, Chew Y T. Comparative studies of three approaches for GDQ computation of incompressible Navier- Stokes equations in primitive variable form [J]. International Journal of Computational Fluid Dynamics, 2004, 18(5): 401– 412.
[11] Bruneau C H, Saad M. The 2D lid-driven cavity problem revisited [J]. Computers & Fluids, 2006, 35(3): 326–348.
[12] Marchi C H, Suero R, Araki L K. The lid-driven square cavity flow: numerical solution with a 1024 x 1024 grid [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2009, 31(3): 186–198.
[13] Davis M B, Carey G F. Iterative solution of the stream function-vorticity equations using a multigrid solver with finite elements [J]. Communications in Numerical Methods in Engineering, 1993, 9(7): 587–594.
[14] Shu C, Xue H. Comparison of two approaches for implementing stream function boundary conditions in DQ simulation of natural convection in a square cavity [J]. International Journal of Heat and Fluid Flow, 1998, 19(1): 59–68.
[15] 刘剑, 王鑫伟. 基于微分求积法的逐步积分法与常用时间积分法的比较 [J]. 力学季刊, 2008, 29(2): 304–309.
LIU Jian, WANG Xin-wei. Comparisons of successive integration method based on differential quadrature with commonly used time integration schemes [J]. Chinese Quarterly of Mechanics, 2008, 29(2): 304–309.
[16] 汪芳宗, 廖小兵, 谢雄. 微分求积法的特性及其改进 [J]. 计算力学学报, 2015, 32(6): 765–771.
WANG Fang-zong, LIAO Xiao-bing, XIE Xiong. Characteristic of the differential quadrature method and its improvement [J]. Chinese Journal of Computational Mechanics, 2015, 32(6): 765–771.
[17] Ku H C, Taylor T D, Hirsh R S. Pseudospectral methods for solution of the incompressible Navier-Stokes equations [J]. Computers & Fluids, 1987, 15(2): 195–214.
[18] Wang X, Liu F, Wang X, Gan L. New approaches in application of differential quadrature method to fourth-order differential equations [J]. Communications in Numerical Methods in Engineering, 2005, 21(2): 61–71.

PDF(684 KB)

Accesses

Citation

Detail

段落导航
相关文章

/