承载传递误差曲线的波动程度可反映出齿轮副的动态性能,波动幅值越大,噪音越大;波动幅值越小,噪音越小,传动越平稳。论文首先以局部综合法(Local Synthesis)为基础,并依据格里森准双曲面齿轮的加工原理,对HGT准双曲面齿轮进行了加工参数设计。在此基础上以传动比函数的一阶导数 和接触迹线与根锥的夹角 为优化变量,以承载传动误差幅值最小为目标函数,通过遗传算法对加工参数进行优化设计,以提高齿轮副的动态特性。研究发现:1)当大轮加载扭矩分别为800N.m和1500N.m时,优化后承载传动误差幅值分别降低了37.92%和16.57%;2)为了保持齿轮副较好的振动特性,应使其尽量在局部最小幅值对应的载荷附近工作,且随着 的增大,局部最小幅值向大载荷方向移动,说明要使齿轮副具有较小的承载传动误差幅值需要较大的载荷。
Abstract
The fluctuation degree of the loaded transmission error curve can reflect the dynamic performance of a gear pair.The greater the fluctuation amplitude,the bigger the noise; the smaller the fluctuation amplitude,the smaller the noise and the transmission is more stable.Firstly,based on the local synthesis method (Synthesis Local),and according to the processing principle of the Gleason hypoid gear,the processing parameters of the HGT hypoid gear were designed.On this basis,the first order derivative of transmission ratio function and the angle between the contact trace and the root cone were treated the optimization variables,and the amplitude of the loaded transmission was treated as the objective function,then the optimization design for the processing parameters was done through the genetic algorithm,for improving the dynamic characteristics of the gear pair.It is found that: ① when the gear load torque is 800 N•m and 1 500 N•m, the amplitude of the loaded transmission error is reduced by 37.92% and 16.57% respectively; ② in order to keep the desirable vibration characteristics of gear pair,it should be to work near the load of local minimum amplitude; and with the increase of,the local minimum amplitude is moved to the direction of large load; it illustrates that,in order to make the gear pair with a smaller load bearing capacity,the amplitude of the loaded transmission error is larger.
关键词
HGT加工方法 /
准双曲面齿轮 /
加工参数设计 /
承载传动误差 /
优化设计。
{{custom_keyword}} /
Key words
HGT processing method /
hypoid gear /
design of machining parameters /
loaded transmission error /
optimization design
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 杨宏斌, 范明, 周彦伟等. 高齿准双曲面齿轮的研究[J]. 中国机械工程,2000,11(8):897-900.
YANG Hong-bin, FAN Ming, ZHOU Yan-wei. Research on high tooth hypoid gear[J]. China Mechanical Engineering, 2000,11(8):897-900.
[2] 方宗德,杨宏斌. 准双曲面齿轮的优化切齿设计[J].汽车工程,1998,20(5):302-307.
FANG Zong-de, YANG Hong-bin. Optimal cutting design for hypoid gears[J]. Automotive Engineering,1998,20(5):302-307.
[3] 王星, 方宗德, 李声晋. HGT准双曲面齿轮传动的轮齿接触分析[J]. 西北工业大学学报, 2014, 32(3): 475-480.
WANG Xing, FANG Zong-de, LI Sheng-jin. Tooth Contact Analysis of HGT Hypoid Gear Drives[J]. JOURNAL OF NORTHWESTERN POLYTECHNICAL UNIERSITY, 2014, 32(3): 475-480.
[4] SIMON V V. Advanced manufacture of spiral bevel gears on CNC hypoid generating machine[J]. Journal of Mechanical Design, 2010, 132(3): 031001.
[5] SIMON V V. Generation of Hypoid Gears on CNC Hypoid Generator[J]. journal of mechanical design, 2011, 133(12): 121003.
[6] NISHINO T. Generation and curvature analysis of face-hobbed hypoid gears[C]//Proceedings of JSME international conference on motion and power transmissions. Sendai,2009: 64-69.
[7] SIMON V V. Optimization of face-hobbed hypoid gears[J]. Mechanism and Machine Theory, 2014, 77: 164-181.
[8] 高建平,方宗德. Non-linear Dynamic Analysis of Hypoid Gear Drive ang Spiral Bevel Gears. 第4届世界齿轮与动力传输会议,法国,1999.
GAO Jian-ping, FANG Zong-de. Non-linear Dynamic Analysis of Hypoid Gear Drive ang Spiral Bevel Gears. The fourth world gear and power transmission conference, France, 1999.
[9] 曹雪梅, 周彦伟, 邓效忠等. 弧齿锥齿轮的传动误差_重合度和噪声的关系[J]. 机械传动, 2003, 27(2):43-45.
CAO Xue-mei, ZHOU Yan-wei, DENG Xiao-zhong. The relationship between transmission error_ coincidence degree and noise for the spiral bevel gear [J]. Journal of Mechanical, 2003, 27(2):43-45.
[10] Wang C, Fang Z D, Jia H T. Investigation Of A Design Modification For Double Helical Gears Reducing Vibration And Noise[J]. Journal of Marine Science and Application, 2010, 9(1): 81-86.
[11] 王峰, 方宗德, 李声晋等. 多工况人字齿轮传动系统结构减振分析及优化[J]. 振动与冲击, 2014, (22):127-130.
WANG Feng, FANG Zong-de, LI Sheng-jin. Structural vibration analysis and optimization of herringbone gear transmission system under multiple loads[J]. JOURNAL OF VIBRATION AND SHOCK, 2014, (22):127-130.
[12] Lin H H, Oswald F B, Townsend D P. Dynamic loading of spur gears with linear or parabolic tooth profile modifications[R]. National Aeronautics and Space Administration Cleveland Ohlewis Research Center, 1989.
[13] Wagaj P, Kahraman A. Impact of tooth profile modifications on the transmission error excitation of helical gear pairs[C]//Proceedings of ESDA2002: 6th Biennial Conference on Engineering Systems Design and Analysis. 2002.
[14] Umezawa K. Low Vibration design on helical gear pair[M]. AGMA, 1998.
[15] Umeyama M, Kato M, Inoue K. Effects of gear dimensions and tooth surface modifications on the Loaded transmission error of a helical gear pair[J]. Journal of Mechanical Design, 1998, 120(1): 119-125.
[16] Liu G, Parker R G. Dynamic modeling and analysis of tooth profile modification for multimesh gear vibration[J]. Journal of Mechanical Design, 2008, 130: 121402.
[17] 方宗德. 齿轮轮齿承载接触分析(LTCA)的模型和方法[J]. 机械传动,1998, 13(9):1-3, 16.
FANG Zong-de. Model and method of loaded tooth contact analysis (LTCA) [J]. Journal of Mechanical, 1998, 13(9):1-3, 16.
[18] 邓效忠,方宗德,张金良等. 弧齿锥齿轮的高重合度设计[J]. 中国机械工程,2002, 22(2):791-795.
DENG Xiao-zhong, FANG Zong-de, ZHANG Jin-liang. High degree design for Spiral Bevel Gears[J]. CHINA MECHANICAL ENGINEERING, 2002, 13(9):791-795.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}