钻头钻进不同介质时的振动信号特征识别研究

刘刚 1,张家林 1,刘闯 2,杨帆3,杜佳诚1

振动与冲击 ›› 2017, Vol. 36 ›› Issue (8) : 71-78.

PDF(3023 KB)
PDF(3023 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (8) : 71-78.
论文

钻头钻进不同介质时的振动信号特征识别研究

  • 刘刚 1 , 张家林 1,刘闯 2,杨帆3,杜佳诚1
作者信息 +

An identification method of vibration signal features when bit drills different mediums

  • LIU Gang1,ZHANG Jialin1, LIU Chuang2, YANG Fan3, DU Jiacheng1
Author information +
文章历史 +

摘要

钻井作业中,钻头破碎岩石产生振动,利用该振动特征可以实时反映钻进介质的种类。本文提出了一种钻头钻进不同介质时的振动信号特征识别方法,通过牙轮钻头破岩室内实验,采集到在不同钻压下钻头钻进砂岩、页岩、水泥环和套管时的声振信号,基于数字信号的时频处理,提取了信号时域和频域的50个特征值,应用PCA降维特征矩阵获取特征向量,建立不同钻进情况的钻头信号“指纹”特征,最后通过BP神经网络对“指纹”信息进行聚类后识别岩性和钻压。结果表明,该方法可以完成对钻头信号的特征识别,进而区分钻进地层和井眼材料(套管和水泥环),为井眼防碰作业中岩性在线识别提供技术支撑。

Abstract

As a bit breaks rock into small cuttings,a series of vibrations are produced which can reflect the real-time types of drilling lithology.An identification method of vibration signal features was brought forward to monitor drilling mediums.An experiment was carried out to break rocks using a roller bit,and then sound and vibration signals were acquired by drilling clay,shale,cement and casing under three different pressures.According to time domain and frequency domain analysis,bit signal characteristics were extracted and fifty eigenvalues were got.Then the PCA dimensionality reduction algorithm was applied to reduce eigenvalues dimensions,getting feature vectors and create bits “fingerprint” of each drilling case.Eventually,A BP neural network was applied to cluster bits “fingerprint” for drilling case recognition.The results indicate that with the aid of the method,bits signals can differentiate drilling formation and wellbore materials,such as casing and cement.The research provides technical support to drilling lithology identification during borehole anti-collision monitoring. 

关键词

振动信号 / 钻进岩性 / 特征识别 / PCA降维 / 神经网络

Key words

vibration signals / drilling lithology / feature recognition / PCA dimensionality reduction / BP neural network

引用本文

导出引用
刘刚 1,张家林 1,刘闯 2,杨帆3,杜佳诚1. 钻头钻进不同介质时的振动信号特征识别研究[J]. 振动与冲击, 2017, 36(8): 71-78
LIU Gang1,ZHANG Jialin1, LIU Chuang2, YANG Fan3, DU Jiacheng1. An identification method of vibration signal features when bit drills different mediums[J]. Journal of Vibration and Shock, 2017, 36(8): 71-78

参考文献

[1] 饶志华,杨超,段泽辉,等. 浅层多井防碰相对井间距预测模型的建立与现场验证[J]. 中国海上油气,2014, 26(4): 80-83.
RAO Zhihua, YANG Chao, DUAN Zehui, et al. Establishment and field verification of relative inter-well distance prediction model for anti-collision of shallow multi-wells [J]. China Offshore and Gas, 2014, 26(4): 80-83.
[2] 刘刚,张家林,刘闯,等. 基于时域统计特征的井眼碰撞识别方法[J]. 中国石油大学学报(自然科学版), 2016, 40(02): 70-75.
LIU Gang, ZHANG Jia-lin, LIU Chuang, et al. A borehole collision recognition method based on the timestatistical characteristics [J]. Journal of China University of Petroleum(Edition of Natural Science), 2016, 40(02): 70-75.
[3] 刘刚,孙金,何宝生,等. 定向井防碰地面监测系统设计及现场试验[J]. 石油钻探技术,2012, 01: 7-11.
LIU Gang, SUN Jin, He Bao-sheng, et al. Design and field test of surface monitoring system for directional wells anti-collison [J]. Petroleum Drilling Techniques, 2012, 01: 7-11.
[4] 刘刚,孔得臣,孙金,等. 套管头振动信号特征应用于油井防碰监测的可行性分析[J]. 中国海上油气,2012, 24(3): 54-57.
LIU Gang, KONG Dechen, SUN Jin, et al. Feasibility analysis on application of casing head vibration signal in wellbore anti-collision monitoring [J]. China Offshore and Gas, 2012, 24(3): 54-57.
[5] 刘刚,陈超,蔡鹏,等. 井眼防碰技术在南海油田 W9H 的应用[J]. 科学技术与工程,2012, 12(26): 6601-6604.
LIU Gang, CHEN Chao, CAI Peng, et al. The application of anti-collision monitoring technique in the well W9H of the South China Sea oilfield [J]. Science Technology and Engineering, 2012, 12(26): 6601-6604.
[6] Martin Z, Lesso Igor, Dorèák Lubomír. Acoustic identification of rocks during drilling process [J]. Acta Montanistica Slovaca, 2003, 8(4): 91-93.
[7] Rajesh Kumar B, Vardhan H, Govindaraj M, et al. Regression analysis and ANN models to predict rock properties from sound levels produced during drilling [J]. International Journal of Rock Mechanics & Mining Sciences, 2012, 58(2013):61-72.
[8] 李玮, 李亚楠, 陈世春, 等. 井底牙轮钻头的钻速方程及现场应用[J]. 中国石油大学学报(自然科学版),2013, 37(3): 74-77.
Li Wei, Li Ya-nan, Chen Shi-chun, et al. Drilling rate model of cone bit in bottom hole and field application [J]. Journal of China University of Petroleum(Edition of Natural Science), 2013, 37(3): 74-77.
[9] 王清峰,朱才朝,宋朝省,等. 牙轮钻头单牙轮的破岩仿真研究[J]. 振动与冲击,2010, 29(10): 108-112.
WANG Qing-feng, ZHU Cai-chao, SONG Chao-sheng, et al. Non-linear dynamic analysis of a roller cone bit-well rock system with rock-cone bit interaction [J]. Journal of vibration and shock, 2010, 29(10): 108-112.
[10] 刘刚,刘闯,夏向阳,等. 基于HHT方法的钻头振动信号识别[J]. 振动与冲击,2015, 46(12): 212-218.
LIU Gang, LIU Chuang, XIA Xiang-yang, et al. Identification of vibration singals of drill bit based on Hilbert-Huang transform method [J]. Journal of vibration and shock, 2015, 46(12): 212-218.
[11] 郭延庆,孟晨,杨森,等. 基于通用检测平台的高频信号传输补偿方法研究[J]. 计算机测量与控制,2011, 19(11): 2791-2794.
GUO Yan-qing, MENG Chen, YANG Shen, et al. Research on technology of high frequency transmission signal compensation based on general test plotform [J]. Computer Measurement & Control, 2011, 19(11): 2791-2794.
[12] Flegner P, Kacur J, Durdan M, et al. Application of adaptive filters in rock separation by rotary drilling process identification [J]. Acta Montanistica Slovaca, 2015, 20(1): 38-48.
[13] 王庆有,邹晓峰. 轨道振动的非接触测量[J]. 光学技术,1998, (06): 18-19.
WANG Qing-you, Zhou Xiao-feng. Noncontact measuring of rail steel vibration [J]. Optical Technique, 1998, (06): 18-19.
[14] 程红伟,陶俊勇,陈循,等. 偏斜非高斯随机振动信号幅值概率密度函数研究[J]. 振动与冲击,2014, 33(12): 121-125.
CHENG Hong-wei1, TAO Jun-yong, CHEN Xun, et al. Amplitude probability density function for skewed non-gaussian random vibration signals based on gaussian-mixture model [J]. Journal of vibration and shock, 2014, 33(12): 121-125.
[15] 贾亮,田宇翔. 基于局部多项式傅里叶变换的语音盲源分离[J]. 电声技术,2014, 38(2): 45-49.
JIA Liang, TIAN Yu-xiang. Speech signal blind separation based on local polynomial fourier transform [J]. Audio Engineering, 2014, 38(2): 45-49.
[16] 殷祥超. 振动理论与测试技术[M]. 中国矿业大学出版社,2007.
[17] 霍兵勇,易伟建. 密集频率数字信号的判定和校正方法[J]. 振动与冲击,2013, 32(2): 171-174.
Huo Bing-yong, Yi Wei-jian. Identification and correction for a digital signal with close frequencies [J]. Journal of vibration and shock, 2013, 32(2): 171-174.
[18] 刘刚,刘闯,夏向阳,等. 基于 PCA-SVDD 方法的钻头异常钻进识别[J]. 振动与冲击,2015, 34(13): 158-162.
LIU Gang, LIU Chuang, XIA Xiang-yang, et al. Drill bit abnormal drilling condition recognition based on PCA-SVDD [J]. Journal of vibration and shock, 2015, 34(13): 158-162.
[19] 唐宏宾,吴运新,滑广军,等. 基于PCA和BP网络的液压油缸内泄漏故障诊断[J]. 中南大学学报(自然科学版),2011, 42(12): 3709-3714.
TANG Hong-bin, WU Yun-xin, HUA Guang-Jun, et al. Internal leakage fault diagnosis of hydraulic cylinder using PCA and BP network [J]. Journal of Central South University(Science and Technology), 2011, 42(12): 3709-3714.
[20] Shreedharan S, Hegde C, Sharma S, et al. Acoustic fingerprinting for rock identification during drilling [J]. International Journal of Mining & Mineral Engineering, 2014, 5(2): 89-105.
[21] 周璇,杨建成. 基于支持向量回归机的空调逐时负荷滚动预测算法[J]. 中南大学学报(自然科学版), 2014(03): 952-957.
ZHOU Xuan, YANG Jian-cheng. An algorithm for hourly load rolling forecasting of air conditioning system based on SVR [J]. Journal of Central South University(Science and Technology), 2014(03): 952-957.

PDF(3023 KB)

Accesses

Citation

Detail

段落导航
相关文章

/