基于多元Copula函数的桥梁体系地震易损性分析方法研究

宋帅1,钱永久1,吴刚2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (9) : 122-129.

PDF(1023 KB)
PDF(1023 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (9) : 122-129.
论文

基于多元Copula函数的桥梁体系地震易损性分析方法研究

  • 宋帅1 ,钱永久1,吴刚2
作者信息 +

Seismic fragility analysis of a bridge system based on multivariate Copula function

  • SONG Shuai1,  QIAN Yongjiu1,  WU Gang2
Author information +
文章历史 +

摘要

为了考虑桥墩、支座等构件地震需求之间相关性,引入多元Copula函数对构件地震需求之间的相关结构进行描述,提出了桥梁体系易损性分析的新方法。基于增量动力分析结果建立了单个构件的易损性,采用核光滑方法对各构件的边缘分布函数进行估计;基于离差平方和最小准则和最小距离法对多元Copula函数进行了参数估计及优选;结合单个构件的易损性及多元Copula函数,建立了桥梁体系的易损性曲线,分析了构件地震需求之间相关性对桥梁体系易损性的影响。结果表明:桥墩、支座等构件地震需求之间的相关性对桥梁体系易损性影响显著;基于离差平方和最小准则构造的多元Copula函数,能够准确描述构件地震需求之间的相关结构,有效降低桥梁体系易损性分析的难度。

Abstract

In order to consider the dependence of piers,bearings and other components’ seismic demands,the multivariate Copula function was adopted to describe the dependence structure of components’ seismic demands and a new method for the seismic fragility analysis of a bridge system was proposed.Based on the results of incremental dynamic analysis,the marginal distribution function of each component was calculated by using the kernel smoothing method.Parameters of the multivariate Copula function were estimated based on the minimum deviation square sum and the optimal Copula function was selected by using the minimum distance method.Combining the component fragility with the multivariate Copula function,the fragility curve of the bridge system was developed and the effects of dependence of components’ seismic demands on the system fragility were analyzed.The results indicated that the dependence of piers,bearings and other components’ seismic demands has an important influence on the seismic fragility of the bridge system; the multivariate Copula function constructed  with the minimum deviation square sum can describe the dependence structure of components’ seismic demands accurately and reduce the difficulty level of the bridge system fragility analysis effectively.

关键词

桥梁体系 / 地震易损性 / 多元Copula函数 / 地震需求相关性 / 离差平方和最小 / 核光滑方法

Key words

bridge system / seismic fragility / multivariate Copula function / dependence of seismic demands / minimum deviation square sum / kernel smoothing method

引用本文

导出引用
宋帅1,钱永久1,吴刚2. 基于多元Copula函数的桥梁体系地震易损性分析方法研究[J]. 振动与冲击, 2017, 36(9): 122-129
SONG Shuai1, QIAN Yongjiu1, WU Gang2. Seismic fragility analysis of a bridge system based on multivariate Copula function[J]. Journal of Vibration and Shock, 2017, 36(9): 122-129

参考文献

[1] Taskari O, Sextos A. Multi-angle, multi-damage fragility curves for seismic assessment of bridges [J]. Earthquake Engineering and Structural Dynamics, 2015, 44(7): 2281-2301.
[2] Goda K, Tesfamariam S. Multi-variate seismic demand modelling using copulas: application to non-ductile reinforced concrete frame in Victoria, Canada [J]. Structural Safety, 2015, 56:39-51.
[3] 李吉涛,杨庆山,刘阳冰. 多点地震激励下大跨连续钢构桥易损性分析[J]. 振动与冲击, 2013, 32(5): 75-80.
LI Ji-tao, YANG Qing-shan, LIU Yang-bing. Fragility analysis of long span continuous rigid frame bridge under multi-support excitations [J]. Journal of Vibration and Shock, 2013, 32(5): 75-80. (in Chinese)
[4] 李超,李宏男. 考虑氯离子腐蚀作用的近海桥梁结构全寿命抗震性能评价[J]. 振动与冲击, 2014, 33(11): 70-77.
LI Chao,LI Hong-nan. Life-cycle seismic performance evaluation of offshore bridge structures considering chloride ions corrosion effect [J]. Journal of Vibration and Shock, 2014, 33(11): 70-77. (in Chinese)
[5] Yang C S W, Werner S D, DesRoches R. Seismic fragility analysis of skewed bridges in the central southeastern United States [J]. Engineering Structures, 2015, 83: 116-128.
[6] Billah A M M , Alam M S. Seismic fragility assessment of highway bridges: a state-of-the-art review [J]. Structure and Infrastructure Engineering, 2015, 11(6): 804-832.
[7] Tavares D H, Suescun J R, Paultre P, et al. Seismic fragility of a highway bridge in Quebec [J]. Journal of Bridge Engineering-ASCE, 2013, 18(15): 1131-1139.
[8] 李立峰, 吴文朋, 黄佳梅, 等. 地震作用下中等跨径 RC 连续梁桥系统易损性研究[J]. 土木工程学报, 2012, 45(14): 152―160.
LI Li-feng, WU Wen-peng, HUANG Jia-mei, et al. Study on system vulnerability of medium span reinforced concrete continuous girder bridge under earthquake excitation [J]. China Civil Engineering Journal, 2012, 45(14): 152-160. (in Chinese)
[9] Ramanathan K, Padgett J E, DesRoches R. Temporal evolution of seismic fragility curves for concrete box-girder bridges in California[J]. Engineering Structures, 2015, 97: 29-46.
[10] Nielson B G, DesRoches R. Seismic fragility methodology for highway bridges using a component level approach [J]. Earthquake Engineering and Structural Dynamics, 2007, 36(6): 823-839.
[11] 董俊,单德山,张二华, 等. 非规则连续刚构桥地震易损性分析[J]. 西南交通大学学报, 2015, 50(5):845-851, 878.
DONG Jun, SHAN De-shan, ZHANG Er-hua, et al. Seismic fragility of irregular continuous rigid frame bridge[J]. Journal of Southwest Jiaotong University, 2015, 50(5): 845-851, 878. (in Chinese)
[12] Hong H P, Zhou W, Zhang S, et al. Optimal condition-based maintenance decisions for systems with dependent stochastic degradation of components [J]. Reliability Engineering and System Safety, 2014, 121: 276-288.
[13] Ghosh S. Modelling bivariate rainfall distribution and generating bivariate correlated rainfall data in neighbouring meteorological subdivisions using copula [J]. Hydrological Processes, 2010, 24(24): 3558-3567.
[14] Nelsen R B. An introduction to Copulas [M]. New York: Springer Science & Business Media, 2013: 7-155.
[15] 张 云, 谭 平, 郑建勋, 等. 柱式柔性墩隔震梁桥结构地震易损性分析[J]. 振动与冲击, 2015, 34(17): 48-54.
ZHANG Yun, TAN Ping, ZHENG Jian-xun, et al. Seismic fragility analysis on isolated bridges with flexible column piers [J]. Journal of Vibration and Shock, 2015, 34(9): 48-54. (in Chinese)
[16] Parool N, Rai, D. Seismic fragility of multispan simply supported bridge with drop spans and steel bearings [J]. Journal of Bridge Engineering-ASCE, 2015, 20(7): 04015021.
[17] Ramadan M O, Mehanny S F, Elhowary H A. Seismic vulnerability of box girder continuous bridges under spatially variable ground motions[J]. Bulletin of Earthquake Engineering, 2015, 13(6): 1727-1748.
[18] Mackie K R, Cronin K J, Nielson B G. Response sensitivity of highway bridges to randomly oriented multi-component earthquake excitation [J]. Journal of Earthquake Engineering, 2011, 15(6): 850-876.
[19] Pan Y, Agrawal A K, Ghosn M, et al. Seismic fragility of multi-span simply supported steel highway bridges in New York State. I: bridge modeling, parametric analysis, and retrofit design [J]. Journal of Bridge Engineering-ASCE, 2010, 15(5):448-461.
[20] Vořechovský M. Hierarchical refinement of latin hypercube samples [J]. Computer-Aided Civil and Infrastructure Engineering, 2015, 30(5): 394-411.
[21] 庄卫林,刘振宇,蒋劲松. 汶川大地震公路桥梁震害分析及对策[J]. 岩石力学与工程学报, 2009, 28(7): 1377-1387.
ZHUANG Wei-lin, LIU Zhen-yu, JIANG Jin-song. Earthquake induced damage analysis of highway bridges in Wenchuan earthquake and countermeasures [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(7): 1377―1387. (in Chinese)
[22] Nielson B G. Analytical fragility curves for highway bridges in moderate seismic zones [D]. Atlanta, GA: Georgia Institute of Technology, 2005:217-221.
[23] Noh H Y, Lallemant D, Kiremidjian A S. Development of empirical and analytical fragility functions using kernel smoothing methods[J]. Earthquake Engineering and Structural Dynamics, 2015, 44(12): 1163-1180.

PDF(1023 KB)

Accesses

Citation

Detail

段落导航
相关文章

/