变曲率FGM拱的面内自由振动分析

李万春,滕兆春

振动与冲击 ›› 2017, Vol. 36 ›› Issue (9) : 201-208.

PDF(1132 KB)
PDF(1132 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (9) : 201-208.
论文

变曲率FGM拱的面内自由振动分析

  • 李万春,滕兆春
作者信息 +

In-plane free vibration analysis of FGM arches with variable curvature

  • LI Wanchun,TENG Zhaochun
Author information +
文章历史 +

摘要

基于Euler-Bernoulli曲梁理论,考虑材料沿拱厚度方向呈梯度分布时中性层的改变,将变曲率功能梯度材料(FGM)拱在弧线方向离散成多个曲拱单元。视每个曲拱单元为半径一定的圆弧拱单元,根据Hamilton变分原理推导出FGM圆弧拱单元的面内自由振动方程,进而求得了单元传递矩阵。然后利用传递矩阵法(TMM)推导出变曲率FGM拱的面内自由振动特征方程,求解两端固定边界条件下变曲率FGM拱面内自由振动的固有频率,并将得到结果与现有文献作了比较,证明TMM对求解该问题的有效性。分析了曲率变化系数和材料体积分数变化系数对变曲率FGM拱的面内自由振动频率的影响。

Abstract

Based on the theory of Euler-Bernoulli curved beam,the shifting of neutral layer was considered when materials were gradually distributed trapezoidally along the arch thickness,and functionally graded material (FGM) arches with variable curvature were discretized into a number of curved arch elements along the arc direction.Every curved arch element was considered as a circular arch element with a constant radius,according to Hamilton variational principle,the in-plane free vibration equation of a FGM circular arch element was derived,then the element transfer matrix was deduced.Furthmore,using TMM,the in-plane free vibration characteristic equation of the FGM arch with variable curvature was derived,the in-plane free vibration natural frequencies of the FGM arch with variable curvature under two-clamped end boundary condition were solved,the results were compared with those previously reported.It was shown that TMM is effective to solve this problem.The influences of curvature varying coefficient and material volumn fraction varying coefficient on the in-plane free vibration frequencies of the FGM arch with variable curvature were analyzed.

关键词

变曲率 / FGM拱 / 面内自由振动 / 频率 / 传递矩阵法(TMM)

Key words

variable curvature / functionally graded materials arches / in-plane free vibration / frequency / transfer matrix method

引用本文

导出引用
李万春,滕兆春. 变曲率FGM拱的面内自由振动分析[J]. 振动与冲击, 2017, 36(9): 201-208
LI Wanchun,TENG Zhaochun. In-plane free vibration analysis of FGM arches with variable curvature[J]. Journal of Vibration and Shock, 2017, 36(9): 201-208

参考文献

[1] Chakraborty A, Gopalakrishnan S, Reddy J N.  A new beam finite element for the analysis of functionally graded materials[J]. International Journal of Mechanical Sciences. 2003, 45(3):519-539.
[2] Goupee A, Vel S. Optimization of natural frequencies of bidirectional functionally graded beams[J]. Structural and  Multidisciplinary Optimization, 2006, 32(6):473-484.
[3] Malekzadeh P, Setoodeh A R, Brrmshouri E. A hybrid layerwise and differential quadrature method for in-plane free vibration of laminated thick circular arches[J]. Journal of Sound and Vibration, 2008, 315(1-2): 212–225.
[4] Lü Q, Lü C F. Exact two-dimensional solutions for in-plane natural frequencies of laminated circular arches[J]. Journal of Sound and Vibration, 2008, 318(4-5): 982–990.
[5] Tseng Y P,Huang C S,Kao M S. In-plane vibration of laminated curved beams with variable curvature by dynamic stiffness analysis[J]. Composite Structures, 2000, 50(2): 103-114.
[6] Lim C W, Yang Q, Lü C F. Two-dimensional elasticity solutions for temperatire-dependent in-plane vibration of FGM circular arches[J]. Composite Structures, 2009, 90(3): 323-329.
[7] Carlos P F, Marcelo T P. The dynamics of thick curved beams constructed with functionally graded materials[J]. Mechanics Research Communications, 2010,37(6):565-570.
[8] Zeng Q C, Lim C W, Lü C F, et al. Asymptotic two-dimensional elasticity approach for free vibration of FGM circular arches [J]. Mechanics of Advanced Materials and Structures, 2012, 19(1-3):29-38.
[9] Ugurcan E. In-plane free vibrations of circular beams made of functionally graded material in thermal environment: Beam theory approach[J]. Composite Structures, 2015, 122:217-228.
[10] 胡海昌. 弹性力学的变分原理及其应用[M]. 北京: 科学出版社, 1982.
   Hu H C. The variational principle of elasticity and its application[M]. Beijing: Science Press, 1982. (in Chinese)
[11] 向天宇, 郑建军. 变截面圆拱的自由振动[J]. 振动与冲击, 2000, 19(2):59-63.
   Xiang T Y, Zheng J J. Free vibration of circular arches with variable cross-section[J]. Journal of vibration and shock, 2000, 19(2):59-63. (in Chinese)
[12] Zhao Y Y, Kang H J. In-plane free vibration analysis of cable-arch structure[J]. Journal of Sound and Vibration, 2008, 312(3): 363-379.
[13] 孙训方, 方孝淑, 关来泰. 材料力学[M]. 北京: 高等教育出版社, 1982.
   Sun X F, Fang X S, Guan L T. Mechanics of Materials[M]. Beijing: Higher Education Press, 1982. (in Chinese)
[14] Li S R, Su H D, Cheng C J. Free vibration of functionally graded material beams with surface-bonded piezoelectric layers in thermal environment[J]. Applied Mathematics and Mechanics (English Edition), 2009, 30(8): 969-982.
[15] Viola E, Artioli M, Dilena M. Analytical and differential quadrature results for vibration analysis of damaged circular arches[J]. Journal of Sound and Vibration, 2005, 288(4-5): 887-906.
[16] 同济大学数学教研室. 线性代数[M]. 北京: 高等教育出版社, 1999.
    Department of Mathematics, Tongji University. Linear Algebra[M]. Beijing: Higher Education Press, 1999. (in Chinese)

PDF(1132 KB)

612

Accesses

0

Citation

Detail

段落导航
相关文章

/