基于最小熵解卷积和Teager能量算子直升机滚动轴承复合故障诊断研究

陈海周1 王家序1,2 汤宝平1 李俊阳1

振动与冲击 ›› 2017, Vol. 36 ›› Issue (9) : 45-50.

PDF(924 KB)
PDF(924 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (9) : 45-50.
论文

基于最小熵解卷积和Teager能量算子直升机滚动轴承复合故障诊断研究

  • 陈海周1 王家序1,2 汤宝平1 李俊阳1
作者信息 +

Helicopter rolling bearing hybrid faults diagnosis using minimum entropy deconvolution and Teager energy operator

  • CHEN Haizhou1,WANG Jiaxu1,2,TANG Baoping1,LI Junyang1
Author information +
文章历史 +

摘要

为了解决强背景噪声环境下直升机滚动轴承故障信号微弱,故障特征难以提取的问题,提出一种基于最小熵解卷积(Minimum Entropy Deconvolution, MED)与Teager能量算子(Teager Energy Operator, TEO)的滚动轴承故障特征提取的新方法。根据滚动轴承故障信号表现为冲击波形的特点和MED降噪对冲击特征敏感的特性,首先采用MED对故障信号进行降噪处理,同时增强信号中的冲击成分;再结合TEO适合检测信号的瞬时变化,能有效提取故障信号冲击特征的特点,计算降噪信号的Teager能量信号,进行频谱分析提取滚动轴承的故障特征。通过对仿真信号和直升机滚动轴承混合故障信号进行分析,实验结果表明,本文提出的方法能有效提取强背景噪声环境中的微弱复合故障特征,具有一定的工程应用价值。

Abstract

In order to solve the problem that fault signals of helicopter rolling bearing are weak and fault characteristics are difficult to extract under  strong background noise,a new method based on the minimum entropy deconvolution(MED) and Teager energy operator was proposed to extract fault characteristics of rolling bearings.According to impulse characteristics of rolling bearing fault signals and the feature that MED is sensitive to impulse characteristics,the MED was firstly used to denoise fault signals and enhance impulse components.Teager energy operator is suitable for instantaneous change of detected signals and can effectively extract impact characteristics of fault signals.Teager energy signals of the above denoised fault signals were computed,then fault features of rolling bearings were extracted with the spectral analysis of Teager energy signals.The proposed method was validated by analyzing simulated signals and hybrid fault signals of helicopter rolling bearings.The test results demonstrated that the proposed method can effectively extract weak and hybrid fault features under strong background noise,and have a certain engineering application value.

关键词

直升机 / 滚动轴承 / 最小熵解卷积 / Teager能量算子 / 故障诊断

Key words

helicopter / rolling bearing / minimum entropy deconvolution / Teager energy operator / fault diagnosis

引用本文

导出引用
陈海周1 王家序1,2 汤宝平1 李俊阳1. 基于最小熵解卷积和Teager能量算子直升机滚动轴承复合故障诊断研究[J]. 振动与冲击, 2017, 36(9): 45-50
CHEN Haizhou1,WANG Jiaxu1,2,TANG Baoping1,LI Junyang1. Helicopter rolling bearing hybrid faults diagnosis using minimum entropy deconvolution and Teager energy operator[J]. Journal of Vibration and Shock, 2017, 36(9): 45-50

参考文献

[1]Samuel P D, Pines D J. A review of vibration-based techniques for helicopter transmission diagnostics[J]. Journal of sound and vibration, 2005, 282(1): 475-508.
[2] 陈仲生, 杨拥民, 胡政,等. 基于循环统计量的直升机齿轮箱轴承故障早期检测[J]. 航空学报, 2005, 26(3):371-375.
CHEN Zhong-sheng, YANG Yong-min, HU Zheng, et al. Early Detection of Bearing Faults in Helicopter Gearbox Based on Cyclic-Statistics[J].ACTA AERONAUTICA ET ASTRONAUTICA SINICA,2005,26(3):371-375.
[3] 何德雨, 胡茑庆, 胡雷,等. 直升机传动链振动信号特征提取技术研究[C]// 2012年全国振动工程及应用学术会议.2012.
HE De-yu, HU Niao-qing, HU Lei, et al. Study on feature extraction of vibration signal from Helicopter transmission [C]. 2012 National Conference on Vibration Engineering and Applications. 2012.
[4] Patterson-Hine A, Hindson W, Sanderfer D, et al. A model-based health monitoring and diagnostic system for the UH-60 Helicopter[C]//ANNUAL FORUM PROCEEDINGS-AMERICAN HELICOPTER SOCIETY. AMERICAN HELICOPTER SOCIETY, INC, 2001, 57(2): 1552-1564.
[5] 黄之初, 张家凡. 滚动轴承故障脉冲信号提取及诊断:一种盲解卷积方法 [J]. 振动与冲击, 2006, 25(3):150-154.
HUANG Zhi-chu, ZHANG Jia-fan. Rolling bearing fault impulse signal extraction and diagnosis: a blind deconvolution method [J]. Journal of Vibration and Shock, 2006, 25(3):150-154.
[6] Maragos P, Kaiser J F, Quatieri T F. On amplitude and frequency demodulation using energy operators[J]. Signal Processing, IEEE Transactions on, 1993, 41(4): 1532-1550.
[7] Maragos P, Kaiser J F, Quatieri T F. Energy separation in signal modulations with application to speech analysis[J]. Signal Processing, IEEE Transactions on, 1993, 41(10): 3024-3051.
[8]Evangelopoulos G, Maragos P. Multiband modulation energy tracking for noisy speech detection[J]. Audio, Speech, and Language Processing, IEEE Transactions on, 2006, 14(6): 2024-2038.
[9] 程军圣, 于德介, 杨宇. 基于EMD的能量算子解调方法及其在机械故障诊断中的应用[J]. 机械工程学报, 2004, 40(8):115-118.
CHENG Jun-sheng, YU De-jie, YANG Yu. Energy Operator Demodulation Approach Basedon EMD and its ApplicationinMechanical Fault Diagnosis [J]. CHINESE JOURNAL OF MECHANICAL ENGINEERING,2004, 40(8):115-118.
[10] Bozchalooi I S, Liang M. Teager energy operator for multi-modulation extraction and its application for gearbox fault detection[J]. Smart Materials and Structures, 2010, 19(7): 075008.
[11] Feng Z, Zuo M J, Hao R, et al. Ensemble Empirical Mode Decomposition-Based Teager Energy Spectrum for Bearing Fault Diagnosis[J]. Journal of Vibration and Acoustics, 2013, 135(3): 031013.
[12] 王天金, 冯志鹏, 郝如江,等. 基于Teager能量算子的滚动轴承故障诊断研究[J]. 振动与冲击, 2012, 31(2):1-5.
WANG Tian-jin, FENG Zhi-peng, HAO Ru-jiang et al.Fault diagnosis of rolling element bearings based on Teager energy operator [J].Journal of Vibration and Shock, 2012,31 (2):1-5.
[13] 杨青乐, 梅检民, 肖静,等. Teager能量算子增强倒阶次谱提取轴承微弱故障特征[J]. 振动与冲击, 2015, 34(6):1-5.
YANG Qing-le, MEI Jian-min, XIAO Jing et al. Weak fault feature extraction for bearings based on an order cepstrum enhanced with Teager energy operator [J].Journal of Vibration and Shock, 2015,34 (6):1-5.
[14] Bovik A C, Maragos P, Quatieri T F. AM-FM energy detection and separation in noise using multiband energy operators[J]. Signal Processing, IEEE Transactions on, 1993, 41(12): 3245-3265.
[15]Wiggins R A. Minimum entropy deconvolution[J]. Geoexploration, 1978, 16(1): 21-35.
[16]Lee J Y, Nandi A K. Extraction of impacting signals using blind deconvolution[J]. Journal of Sound and Vibration, 2000, 232(5): 945-962.
[17] Endo H, Randall R B. Enhancement of autoregressive model based gear tooth fault detection technique by the use of minimum entropy deconvolution filter[J]. Mechanical Systems and Signal Processing, 2007, 21(2): 906-919.
[18]Sawalhi N, Randall R B, Endo H. The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution combined with spectral kurtosis[J]. Mechanical Systems and Signal Processing, 2007, 21(6): 2616-2633.
[19] 刘志川, 唐力伟, 曹立军. 基于MED及FSK的滚动轴承微弱故障特征提取[J]. 振动与冲击, 2014, 33(14):137-142.
LIU Zhi-chuan, TANG Li-wei,CAO Li-jun. Feature extraction of rolling bearing's weak fault based on MED and FSK [J]. Journal of Vibration and Shock, 2014, 33(14):137-142.
[20] 王宏超, 陈进, 董广明. 基于最小熵解卷积与稀疏分解的滚动轴承微弱故障特征提取[J]. 机械工程学报, 2013, 49 (1):88-94.
WANG Hong-chao CHEN Jin DONG Guang-ming. Fault Diagnosis Method for Rolling Bearing's Weak Fault Based on Minimum Entropy Deconvolution and Sparse Decomposition [J]. JOURNAL OF MECHANICAL ENGINEERING, 2013,49(1):88-94.
[21] 张亚洲, 石林锁. 滚动轴承局部故障数学模型的建立与应用[J]. 振动与冲击, 2010, 29(4):73-76.
ZHANG Ya-zhou SHI Lin-suo. Establishment and application of mathematical models for roiling element bearings with localized faults [J]. Journal of Vibration and Shock, 2010, 29(14):73-76.
[22] Ho D, Randall R B. Optimisation of bearing diagnostic techniques using simulated and actual bearing fault signals[J]. Mechanical systems and signal processing, 2000, 14(5): 763-788.
[23] Hardman W, Hess A, Sheaffer J. A helicopter powertrain diagnostics and prognostics demonstration[C]//Aerospace Conference Proceedings, 2000 IEEE. IEEE, 2000, 6: 355-365.

PDF(924 KB)

Accesses

Citation

Detail

段落导航
相关文章

/