一种滚动轴承特征频率的自动识别方法研究

高大为,朱永生,刘煜炜,曹鹏辉,高闯

振动与冲击 ›› 2017, Vol. 36 ›› Issue (9) : 58-62.

PDF(847 KB)
PDF(847 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (9) : 58-62.
论文

一种滚动轴承特征频率的自动识别方法研究

  • 高大为,朱永生,刘煜炜,曹鹏辉,高闯
作者信息 +

An automatic recognition method for characteristic frequency of rolling bearings

  • GAO Dawei,ZHU Yongsheng,LIU Yuwei,CAO Penghui,GAO Chuang
Author information +
文章历史 +

摘要

为解决传统滚动轴承故障诊断及状态监测中依赖单一故障特征频率,以及诊断过程中人为主观因素造成诊断结果的不定性与效率低等问题,文章以包络谱与共振解调技术为例,提出一种自动识别滚动轴承故障特征频率及其倍频与调制频率的方法。该方法首先对信号进行包络谱或共振解调分析,然后在此基础上通过迭代算法依次找出转频与故障频率成分,最后,依据各成分在识别结果中的比例来进行故障诊断。人为仿真故障及滚动轴承加速寿命实验证明了文章方法的有效性。

Abstract

In order to solve problems,such as,overdependence on single fault characteristic frequency,and the ambiguity and inefficiency of diagnosis results caused by subjective factors in fault diagnosis of rolling bearings,a method using the envelope spectrum and resonance demodulation analysis of signals was proposed to identify the fault characteristic frequency,and its multiplications and modulation frequency components of rolling bearings.Firstly,the original signal was analyzed with the envelope spectrum or resonance demodulation analysis.Then,a specific algorithm was used to identify faulty frequency components and rotating frequency in the spectrum.At last,the fault diagnosis of rolling bearings was conducted with the corresponding proportions of the identified frequency components.The fault diagnosis simulations and the life acceleration tests of rolling bearings demonstrated the validity of the proposed method.

关键词

故障诊断 / 频率识别 / 包络谱 / 智能算法

Key words

fault diagnosis / frequency identification / envelope spectrum / intelligent algorithm

引用本文

导出引用
高大为,朱永生,刘煜炜,曹鹏辉,高闯. 一种滚动轴承特征频率的自动识别方法研究[J]. 振动与冲击, 2017, 36(9): 58-62
GAO Dawei,ZHU Yongsheng,LIU Yuwei,CAO Penghui,GAO Chuang. An automatic recognition method for characteristic frequency of rolling bearings[J]. Journal of Vibration and Shock, 2017, 36(9): 58-62

参考文献

[1] Ferat Sahin, M.Cetin Yavuz,et al. Fault diagnosis for airplane  engines using Bayesian networks and distributed particle  swarm optimization[J]. Parallel Computing, Volume 33, Issue 2, March 2007, Pages 124-143.
[2] Chang, Y.-w., Y.-c, Wang,et al. Fault diagnosis of a mine  hoist using PCA and SVM techniques[J]. Journal of China University of Mining and Technology, 2008, 18(3): 327-331.
[3] McFadden P D, Smith J D. Vibration monitoring of rolling element bearing by the high-frequency esonance technique-a review [J]. Int. J. Tribology, 1984, 17: 3 - 10.
[4] 王宏超,陈进,董广明,等. 基于快速kurtogram 算法的共振解调方法在滚动轴承故障特征提取中的应用[J]. 振动与冲击,2013, 32(1):35-38.
WANG Hong-chao, CHEN Jin, DONG Guang-ming,et al. Application of resonance demodulation in rolling bearing fault feature extraction based on fast computation of kutrogram [J]. Journal of Vibration and Shock,2013,32 (1): 35-38.
[5]  Dwyer R F.  Detection of non-gaussian signals by frequency domain kurtosis estima-tion[C]. Acoustic, Speech and Signal Processing. Boston: IEEE International Conference on ICASSP, 1983: 607-610.
[6]  Antoni J.  Fast computation of the Kurtogram for the detection of transient faults[J]. Mechanical Systems and Signal Processing,2007,21 (1):108-124.
[7]  Bo Li,Mo-Yuen Chow,Yodyium Tipsuwan,James C. Hung. Neural-Network-Based Motor Rolling Bearing Fault Diagnosis[J], IEEE Transaction on indusrial electronics,2000,47(5): 1060-1068.
[8]  N.Tandon,A.Choudhury. A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearing [J], Tribology International,1999,32(8):469-480.
[9]  何正嘉, 訾艳阳,张西宁, 等. 现代信号处理及工程应用[M]. 西安:西安交通大学出版社, 2007.
[10]  http: ∥www. eecs. cwru. edu /laboratory /bearing /welcome _overview. htm.
[11]  Xiaoran Zhu, Youyun Zhang, Yongsheng Zhu. Bearing performance degradation assessment based on the rough support vector data description[J]. Mechanical Systems and Signal Processing, 2013, 34 (1-2): 203-217.

PDF(847 KB)

Accesses

Citation

Detail

段落导航
相关文章

/