提出一种汽车驱动桥系统的模态综合动力学建模与分析方法,采用非线性轴承单元实现传动系模型与桥壳模型的耦合建模,采用模态综合法对驱动桥各部件的有限元模型进行缩维变换,能够在准确模拟驱动桥系统动力学特性的同时大大缩减系统模型规模,从而快速准确地实现驱动桥系统的静力学非线性求解和动力学分析。以准双曲面齿轮有限元接触分析求得的动态啮合力作为系统激励,计算驱动桥系统的动力学响应,并进行试验验证,数值计算结果能够准确体现准双曲面齿轮动态啮合力激励下的驱动桥系统动力学特性,有效指导驱动桥的减振降噪设计。
Abstract
A modal synthesis dynamic modeling and analysis method for an automotive drive axle system was proposed.The transmission system model and the housing model were coupled with nonlinear bearing elements.In order to realize static nonlinear solving and dynamic analysis of the drive axle system quickly and accurately,finite element models of its components were condensed with the modal synthesis method.Meshing forces of a couple of hypoid gears were calculated based on the finite element contact analysis method.The dynamic responses of the drive axle system excited by the meshing forces of the couple of hypoid gears were calculated and verified with tests.The numerical analysis results revealed the dynamic characteristics of the drive axle system under the excitation of the meshing forces of the couple of hypoid gears correctly and guided the vibration and noise reduction design of the drive axle effectively.
关键词
驱动桥 /
模态综合法 /
准双曲面齿轮 /
动力学分析
{{custom_keyword}} /
Key words
drive axle /
modal synthesis method /
hypoid gear /
dynamic analysis
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘惟信. 汽车车桥设计 [M]. 北京: 清华大学出版社,2004:5-22.
[2] Donley M G, Lim T C, Steyer G C. Dynamic analysis of automotive gearing systems [C]// International Congress & Exposition, 1992:77-87.
[3] Lim T C, Cheng Y. A theoretical study of the effect of pinion offset on the dynamics of hypoid geared rotor system [J]. Journal of Mechanical Design, 1999, 121(4):594-601.
[4] Cheng Y, Lim T C. Vibration analysis of hypoid transmissions applying an exact geometry-based gear mesh theory [J]. Journal of Sound and Vibration, 2001, 240(3):519-543.
[5] Cheng Y, Lim T C. Dynamics of hypoid gear transmission with nonlinear time-varying mesh characteristics [J]. Journal of Mechanical Design, 2003, 125(2):373-382.
[6] 郭年程, 史文库, 刘文军, 等. 驱动桥的整体有限元动态模拟 [J]. 西安交通大学学报, 2012, 46(9):y1-y5.
Guo Nian-cheng, Shi Wen-ku, Liu Wen-jun, et al. Dynamic Simulation of Driving Axle Based on Finite Element Method [J]. Journal of Xi’an Jiaotong University, 2012, 46(9):y1-y5.
[7] 张健. 汽车驱动桥振动噪声研究 [D]. 重庆: 重庆大学, 2005.
[8] 晏慧. 重型商用车驱动桥振动噪声预测研究 [D]. 重庆: 重庆大学, 2010.
[9] 周驰, 丁炜琦, 桂良进, 等. 一种驱动桥齿轮传动系统动力学建模与分析方法 [J]. 振动与冲击, 2015, 34(15):188-194.
ZHOU Chi, DING Wei-qi, GUI Liang-jin, et al. Dynamic modeling and analysis for drive axle gear transmission system [J]. Journal of Vibration and Shock, 2015, 34(15):188-194.
[10] 田程, 周驰, 桂良进, 等. 考虑轴承刚度耦合性和非线性的多支撑轴系有限元分析方法 [J]. 机械工程学报,2015, 51 (17):90-95.
TIAN Cheng, ZHOU Chi, GUI Liang-jin, et al. A Method of Finite Element Analysis for Multi-support Shaft System Base
on the Coupling and Nonlinearity of Bearing Stiffness [J]. Journal of Mechanical Engineering, 2015, 51 (17):90-95.
[11] Litvin F L, Zhang Y. Local synthesis and tooth contact analysis of face-milled spiral bevel gears [R]. Illinois: University of lllinois at Chicago, 1991.
[12] Litvin F L, Fuentes A. Gear geometry and applied theory [M]. 2nd ed. Cambridge University Press, 2004:679-696.
Stiffness Calculations Based on the Finite Element Method [J]. Journal of Mechanical Engineering, 2011, 47(11): 23-29.
[13] Peng T. Coupled multi-body dynamic and vibration analysis of hypoid and bevel geared rotor system [D]. University of Cincinnati, 2010.
[14] Harris T A, Kotzalas M N. Essential concepts of bearing technology. 5th ed. CRC press, 2006:86.
[15] Craig R R, Bampton M C C. Coupling of substructures for dynamic analyses [J]. AIAA Journal, 1968, 6(7):1313-1319.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}