球形弹体打击作用下宽距水间隔铝板的动态响应特性

李营1,2,吴卫国1,张磊2,杜志鹏2,朱海清1,张玮2

振动与冲击 ›› 2018, Vol. 37 ›› Issue (1) : 106-110.

PDF(1661 KB)
PDF(1661 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (1) : 106-110.
论文

球形弹体打击作用下宽距水间隔铝板的动态响应特性

  • 李营1,2,吴卫国1,张磊2,杜志鹏2,朱海清1,张玮2
作者信息 +

Dynamic responses of wide interval water-spacing aluminum plates under sphere projectile impact

  • LI Ying1,2,WU Weiguo1, ZHANG Lei2, DU Zhipeng2, ZHU Haiqing1 ,ZHANG Wei
Author information +
文章历史 +

摘要

设计了水间隔靶板在球形弹体撞击下动态响应的实验装置,利用高速相机记录了整个过程,分析了不同阶段的复杂物理现象,讨论了弹体在水中运动时的位移变化和速度衰减规律,对比了背空靶板和背水靶板在相近速度弹体侵彻作用下的变形特点。得到以下主要结论:(1)球形弹体侵彻宽间距水间隔铝板的过程可以划分为3个阶段,弹体在水中运动的过程中,水中将产生巨大的空化气穴,弹体动能转变为水的动能和势能,且在弹体碰撞后板后,水中势能再次转化为水的动能施加在靶板上。(2)球形弹体在水中运动过程中,阻力系数近似为常数,约为0.38。(3)球形弹体侵彻时,靶板由于局部径缩产生花瓣开裂,背水靶板将比背空靶板产生更小的塑性变形,且背水靶板的花瓣开裂数更少。

Abstract

An experiment device was set up to investigate the dynamic responses of water- spacing aluminum plates, and a super-speed camera was used to record the whole process with complex phenomena in different stages. The projectile velocity and the deformation during its motion in water were studied and the failure modes for water-back plate and air-back pates were analysed. It is gained that: the process can be divided into three stages, and the kinetic energy of the projectile transforms to the kinetic energy and potential energy of water; the projectile resistance when moving in water is a constant, about 0.38; the failure modes of the plates is mainly the radial-shrinkage and the successive petal breaking, and the local deformation and petal number of water-back plates are much less than those of air-back plates.

 

关键词

球形弹体 / 间隔靶板 / 水锤效应 / 破坏模式 / 液舱

Key words

sphere projectile / spacing plates / hydrodynamic ram / failure mode / liquid tank

引用本文

导出引用
李营1,2,吴卫国1,张磊2,杜志鹏2,朱海清1,张玮2 . 球形弹体打击作用下宽距水间隔铝板的动态响应特性[J]. 振动与冲击, 2018, 37(1): 106-110
LI Ying1,2,WU Weiguo1, ZHANG Lei2, DU Zhipeng2, ZHU Haiqing1,ZHANG Wei. Dynamic responses of wide interval water-spacing aluminum plates under sphere projectile impact[J]. Journal of Vibration and Shock, 2018, 37(1): 106-110

参考文献

[1]Varas D, López-Puente J, Zaera R. Experimental analysis of fluid-filled aluminium tubes subjected to high-velocity impact [J]. International Journal of Impact Engineering, 2009, 36(1): 81-91.
[2]Varas D, Zaera R, López-Puente J. Experimental study of CFRP fluid-filled tubes subjected to high-velocity impact[J]. Composite Structures, 2011, 93(10): 2598-2609.
[3]Disimile P J, Davis J., Toy N. Mitigation of shock waves within a liquid filled tank[J]. International Journal of Impact Engineering, 2011, 38: 61-72.
[4]李亚智,陈钢. 充液箱体受弹丸撞击下动态响应的数值模拟[J]. 机械强度, 2007, 29(1): 143-147.
LI Yazhi, CHEN Gang. Numerical simulation of liquid-filled tank response to projectile impact[J].Journal of Mechanical Strength, 2007, 29(1): 143-147.
[5]ZHANG A, YANG S, YAO X.-l. Numerical Simulation of the Penetration of Fuel-filled Tank by a High-speed Projectile[J]. Journal of Ship Mechanics, 2010, 14(9): 998.
[6] 沈晓乐,朱锡,侯海量,等. 高速破片侵彻防护液舱试验研究[J]. 中国舰船研究, 2011, 6(3): 12-15.
SHEN Xiaole, ZHU Xi, HOU Hailiang, etal. Experimental study on penetration properties of high velocity fragment into safety liquid cabin[J]. Chinese Journal of Ship Research, 2011, 6(3): 12-15.
[7] 徐双喜,吴卫国,李晓彬,等. 舰船舷侧防护液舱舱壁对爆炸破片的防御作用[J]. 爆炸与冲击, 2010, 30(4): 395-400.
XU Shuangxi, WU Weiguo, LI Xiaobin, etal. Protective effect of guarding fluid cabin bulkhead under attacking by explosion fragments[J].Explosion and Shock Waves, 2010, 30(4): 395-400.
[8] 李营,张磊,朱海清,等. 爆炸破片在液舱中的速度衰减特性研究[J]. 中国造船, 2016, 57(1): 127-137.
LI Ying, ZHANG Lei, ZHU Haiqing, etal. Velocity attenuation of blast fragments in water tank[J]. Shipbuilding of China, 2016, 57(1): 127-137.
[9] 李营,吴卫国,郑元洲,等. 舰船防护液舱吸收爆炸破片的机理[J]. 中国造船, 2015, 56(2): 38-44.
LI Ying, WU Weiguo, ZHENG Yuanzhou, etal. Study on mechanism of explosive fragments Absorbed by vessel protective tank[J]. Shipbuilding of China, 2015, 56(2): 38-44.
[10] 李典,朱锡,侯海量,等. 高速杆式弹体侵彻下蓄液结构载荷特性的有限元分析[J]. 爆炸与冲击, 2016, 36(1): 1-8.
LI Dian, ZHU Xi, HOU Hailiang, etal. Finite element analysis of load characteristic of liquid-filled structure subjected to high velocity long-rod projectile penetration[J]. Explosion and Shock Waves, 2016, 36(1): 1-8.
[11]Lee M, Longoriaa R G, WILSON D E. Ballistic Waves in High-speed Water Entry[J]. Journal of Fluids and Structures, 1997, 11: 819-844.

PDF(1661 KB)

Accesses

Citation

Detail

段落导航
相关文章

/