基于平稳非高斯结构响应前四阶矩的首次穿越概率计算

张龙文1,卢朝辉1,2,赵衍刚1,2

振动与冲击 ›› 2018, Vol. 37 ›› Issue (1) : 128-135.

PDF(837 KB)
PDF(837 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (1) : 128-135.
论文

基于平稳非高斯结构响应前四阶矩的首次穿越概率计算

  •    张龙文1,卢朝辉1,2,赵衍刚1,2
作者信息 +

 First passage probability assessment based on the first four moments of stationary non-Gaussian structural responses

  • ZHANG Longwen1, LU Zhaohui1,2, ZHAO Yangang1,2
Author information +
文章历史 +

摘要

本文发展了一个平稳非高斯结构响应的首次穿越概率解析方法。在该方法中,基于已得到的平稳非高斯结构响应的前四阶矩(均值、标准差、偏度和峰度),分别利用Winterstein (1994)模型与Ding和Chen模型的等效高斯分位数,以及平稳非高斯结构响应的界限水平,将软化与硬化非高斯结构响应映射为标准高斯过程;进而利用考虑初始条件与群超效应的平稳高斯结构响应的Poisson模型来实现平稳非高斯结构响应的首次穿越概率计算。算例对比分析验证了本文修正方法的有效性和准确性,同时相比蒙特卡洛模拟提高了计算效率,为计算平稳非高斯结构响应的首次穿越概率提供了高效合理的工具。

Abstract

An analytical procedure was developed for estimating the first passage probability of stationary non-Gaussian structural responses. In the procedure, based on the beforehand obtained first four moments of the stationary non-Gaussian structural responses, a stationary non-Gaussian response was mapped into stationary standard Gaussian processes by using the equivalent Gaussian fractile of translation model and the critical level. The equivalent Gaussian fractile of Winterstein’s polynomial (1994) and Ding and Chen model were used for softening and hardening non-Gaussian responses, respectively. Then, the Poisson model based on stationary non-Gaussian structural responses was established considering the effects of clumping and initial conditions on the up-crossing rate. The accuracy and efficiency of the modified method were demonstrated through the comparison study of numerical examples. The results show that the computational efficiency is greatly improved compared with the Monte-Carlo simulation, which provides an efficient and rational tool for the first passage probability assessment of stationary non-Gaussian structural responses.

关键词

首次穿越概率 / 非高斯结构响应 / 统计矩 / Winterstein(1994) 模型 / Ding和Chen模型

Key words

first passage probability / non-Gaussian structural responses / statistical moments / Winterstein (1994) model / Ding and Chen model

引用本文

导出引用
张龙文1,卢朝辉1,2,赵衍刚1,2. 基于平稳非高斯结构响应前四阶矩的首次穿越概率计算[J]. 振动与冲击, 2018, 37(1): 128-135
ZHANG Longwen1, LU Zhaohui1,2, ZHAO Yangang1,2.  First passage probability assessment based on the first four moments of stationary non-Gaussian structural responses[J]. Journal of Vibration and Shock, 2018, 37(1): 128-135

参考文献

[1] 李桂青,李秋胜. 工程结构时变可靠度理论及其应用[M]. 北京:科学出版社,2001.
LI Gui-qing, Li Qiu-sheng. Theory and application of time dependent reliability of engineering structure [M]. Beijing: Science Press, 2001.
[2] Rice S O. Mathematical analysis of random noise [J]. Bell System Technical Journal, 1944, 23 (3): 282-332.
[3] Rice S O. Mathematical analysis of random noise [J]. Bell System Technical Journal, 1945, 24 (1): 46-156.
[4] Coleman J J. Reliability of aircraft structures in resisting chance failure [J]. Operations Research, 1959, 7 (5): 639-945.
[5] 刘佩. 基于贝叶斯理论的结构动力可靠度更新方法与分析[J]. 振动与冲击,2015,34(12):29-34.
LIU Pei. Structural dynamic reliability updating method based on Bayesian theorem [J]. Journal of vibration and shock, 2015, 34(12): 29-34.
[6] Vanmarcke E H. On the distribution of the first passage time for normal stationary process [J]. Journal of Applied Mechanics, 1975, 42(1): 215-220.
[7] 陈建兵,李杰. 非线性随机地震响应的概率密度演化分析[J]. 武汉理工大学学报,2010,32(9):6-10.
CHEN Jian-bing, LI Jie. Probability density evolution analysis for stochastic seismic response of nonlinear structures [J]. Journal of Wuhan University of Tech-nology, 2010, 32(9):6-10.
[8] Crandall S H. First-crossing probabilities of the linear oscillator [J]. Journal of Sound and Vibration, 1970, 12(3): 285-299.
[9] Naess A. Approximate first-passage and extremes of narrow-band Gaussian and non-Gaussian random vibrations [J]. Journal of Sound and Vibration, 1990, 138(3): 365-380.
[10] Barbato M, Conte J P. Structural reliability applications of nonstationary spectral characteristics [J]. Journal of Engineering Mechanics, 2011, 137(5): 371-382.
[11] Ghazizadeh S, Barbato M, Tubaldi E. New analytical solution of the first-passage reliability problem for linear oscillators [J]. Journal of Engineering Mechanics, 2012, 138(6):695-706.
[12] Grigoriu M. Crossings of non-Gaussian translation processes [J]. Journal of Engineering Mechanics, 1984, 110(4): 610-620.
[13] Ochi M. Non-Gaussian random processes in ocean engineering [J]. Probabilistic Engineering Mechanics, 1986, 1(1): 28-39.
[14] Johnsom N L, Kotz S. Continuous univariate distribution-1 [M]. Boston: Houghton Mifflin Company, 1970.
[15] Winterstein S R. Nonlinear vibration models for extremes and fatigue [J]. Journal of Engineering Mechanics, 1988, 114(10): 1772-1790.
[16] He J, Zhao Y G. First passage times of stationary non-Gaussian structural responses [J]. Computers and Structures, 2007, 85(7-8): 431-436.
[17] Zhao Y G, Lu Z H. Fourth-moment standardization for Structural Reliability Assessment [J]. Journal of Structural Engineering, 2007, 133 (7): 916-924.
[18] Choi M, Sweetman B. The Hermite moment model for highly skewed response with application to tension leg [J]. Journal of Offshore Mechanics and Arctic Engineering, 2010, 132(2): 1-8.
[19] Huang M F, Lou W J, Chan C M, et al. Peak distribution and peak factors of wind-induced pressure processes on tall buildings [J]. Journal of Engineering Mechanics, 2013, 139 (12): 1744-1756.
[20] Winterstein S R, Ude T C, Kleiven G. Springing and Slow-Drift Responses: Predicted Extremes and Fatigue vs. Simulation [C]. BOSS-94. Cambrige: Massachusetts Institute of Technology, 1994: 1-15.
[21] Ding J, Chen X. Moment-based translation model for hardening non-Gaussian response processes [J]. Journal of Engineering Mechanics, 2016, 142(2): 1-7.
[22] Ditlevsen O. Duration of visit to critical set by Gaussian process [J]. Probabilistic Engineering Mechanics, 1986, 1(2): 82-93.
[23] He J. Approximate method for estimating extreme value responses of nonlinear stochastic dynamic systems [J]. Journal of Engineering Mechanics, 2015, 141(7): 1-9.
[24] Langley R S. A first passage approximation for normal stationary random processes [J]. Journal of Sound Vibration, 1988, 122(2): 261-275.
[25] Winterstein S R, Kashef T. Moment-based load and response models with wind engineering applications [J]. Journal of Solar Energy Engineering, 2000, 122(3): 122-128.
[26] Winterstein S R, Mackenzie C A. Extremes of nonlinear vibration: comparing models based on moments, L-moments, and maximum entropy [J]. Journal of Offshore Mechanics Arctic Engineering, 2011, 135(2): 185-195.
[27] Fleishman A L. A method for simulation non-normal distributions [J]. Psychometrika, 1978, 43(4):521-532.
[28] Zhao Y G, Lu Z H. Cubic normal distribution and its significance in structural reliability [J]. Structural engineering and mechanics, 2008, 28(3):263-280.
[29] Hohenbichler M, Rackwitz R. Zon-normal dependent vectors in structural safety. Journal of Engineering Mechanics Division, 1981, 107(6): 1227-1238.
[30] Naess A. The response statistics of nonlinear, second order transformations to Gaussian loads [J]. Journal of Sound and Vibration, 1987, 115(1): 103-129.
[31] Bayer V, Bucher C. Importance sampling for first passage problems of nonlinear structures [J]. Probabilistic Engineering Mechanics, 1999, 14(1-2): 27-32.
[32] Song T T, Grigoriu M. Random vibration of mechanical and structural systems [M]. Englewood Cliffs, NJ: Prentice Hall, 1993.

PDF(837 KB)

Accesses

Citation

Detail

段落导航
相关文章

/