基于左特征向量配置的结构声主动控制

白金1 黎胜1,2 夏茂龙1

振动与冲击 ›› 2018, Vol. 37 ›› Issue (1) : 66-71.

PDF(1085 KB)
PDF(1085 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (1) : 66-71.
论文

基于左特征向量配置的结构声主动控制

  • 白金1 黎胜1,2  夏茂龙1
作者信息 +

Active structural acoustic control based on the left eigenvector configuration

  • BAI Jin1 LI Sheng1,2 XIA Maolong1
Author information +
文章历史 +

摘要

本文结合耦合模态空间控制方法通过配置闭环系统的左特征向量实现了结构振动声辐射的主动控制。推导了振动系统的左特征向量与模态振型之间的关系,得出了当闭环系统的模态振型为开环系统的模态振型的线性组合时,闭环系统的左特征向量也为开环系统的左特征向量的线性组合的结论。构造了与激励力向量正交的目标左特征向量,以该左特征向量对应的模态振型为控制目标,采用耦合模态空间控制方法,间接实现了对闭环系统的左特征向量的配置,最终实现了结构振动声辐射的主动控制。本文提出的结构声主动控制方法具有物理意义明确、实施过程简单、声辐射控制效果好的特点。文中以矩形简支板为例进行了结构声辐射主动控制仿真,将闭环系统的第1、4阶左特征向量配置成与激励力向量正交的形式。仿真结果表明简支板的结构振动声辐射得到了有效降低。

Abstract

The left eigenvectors of a closed loop system were controlled to be orthogonal with the excitation force vector for the active structural acoustic control by use of the dependent modal space control (DMSC) method. The relationship between the left eigenvectors and the mode shapes of the vibration system was derived. The conclusion was drawn that the left eigenvectors of the closed loop system are also a linear combination of the left eigenvectors of its corresponding open loop system when the mode shapes of the closed loop system are a linear combination of the mode shapes of the open loop system. The left eigenvectors orthogonal with excitation force vector were constructed and the mode shapes corresponding to the constructed left eigenvectors were considered as the control target, then the control of the left eigenvectors of the closed loop system was realized by the DMSC method indirectly, and finally the active structural acoustic control was achieved. The active structural acoustic control method proposed has the characteristics of clear physical meaning, simple implementation and good sound radiation control performance. The active structural acoustic control of a rectangular simply supported plate was numerically evaluated, and the first and fourth left eigenvectors of the closed loop system were assigned to be orthogonal with the excitation force vector by the DMSC method. The results show that the control scheme proposed here is very efficient in reducing sound radiation.
 

关键词

结构声主动控制 / 耦合模态空间控制 / 左特征向量 / 反馈控制 / 结构声辐射

Key words

active structural acoustic control / dependent modal space control / left eigenvector / feedback control / structural acoustic radiation

引用本文

导出引用
白金1 黎胜1,2 夏茂龙1. 基于左特征向量配置的结构声主动控制[J]. 振动与冲击, 2018, 37(1): 66-71
BAI Jin1 LI Sheng1,2 XIA Maolong1. Active structural acoustic control based on the left eigenvector configuration[J]. Journal of Vibration and Shock, 2018, 37(1): 66-71

参考文献

 [1] Fuller C R, Elliott S J, Nelson P A. Active Control of Vibration[J]. Physics Today, 1997, 50(50): 313-326.
 [2] Fuller C R, Rogers C A, Robertshaw H H. Control of sound radiation with active/adaptive structures[J]. Journal of Sound & Vibration, 1992, 157(1): 19-39.
 [3] Fuller C R, Hansen C H, Snyder S D. Experiments on active control of sound radiation from a panel using a piezoceramic actuator[J]. Journal of Sound & Vibration, 1991, 150(2): 179-190.
 [4] 黎胜. 水下结构声辐射和声传输的数值分析及主动控制模拟研究[D]大连: 大连理工大学, 2001:8-9.
Li Sheng. Numerical analysis and active control simulation of underwater structural acoustic radiation and transmission [D] Dalian: Dalian University of Technology, 2001:8-9.
 [5] Wu T Y, Wang K W. Active vibration isolation via simultaneous left right eigenvector assignment[J]. Smart Materials & Structures, 2008, 17(17): 288-294.
 [6] Choi J W, Kim Y, Kang T, et al. Design of an effective controller via disturbance accommodating left eigenstructure assignment[J]. Journal of Guidance Control & Dynamics, 1993, 18(18): 347-354.
 [7] Choi J W. A simultaneous assignment methodology of right/left eigenstructures[J]. IEEE Transactions on Aerospace & Electronic Systems, 1998, 34(2): 625-634.
 [8] Wu T Y, Chung Y L. Structural acoustic reduction via piezoelectric actuation and adaptive eigenvector optimization algorithm[J]. Journal of Intelligent Material Systems & Structures, 2010, 21(21): 1797-1808.
 [9] Wu T Y, Wang K W. Reduction of structural acoustic radiation via left and right eigenvector assignment approach[J]. Journal of Intelligent Material Systems & Structures, 2009, 20(20): 2173-2186.
[10] Serra M, Resta F, Ripamonti F. Dependent modal space control[J]. Smart Materials & Structures, 2013, 22(10): 622-629.
[11] 邱吉宝,向树红,张正平. 计算结构动力学[M]. 合肥: 中国科学技术大学出版社, 2009:246-252.
Qiu Jibao, Xiang Shuhong,Zhang Zhengping. Computational structural dynamics [M]. Hefei: University of Science & Technology China press, 2009:246-252.
[12] 黎胜,赵德有. 结构声辐射的振动模态分析和声辐射模态分析研究[J]. 声学学报, 2004, 29(03): 200-208.
Li Sheng, Zhao Deyou. Research on modal analysis of structural acoustic radiation using structural vibration modes and acoustic radiation modes [J]. Acta Acustica, 2004, 29 (03): 200-208.
[13] 刘伟,高维成,李惠,等. 基于有效独立的改进传感器优化布置方法研究[J]. 振动与冲击, 2013, 32(6): 54-62.
Liu Wei, Gao Weicheng, Li Hui, et al. Improved optimal sensor placement methods based on effective independence [J]. Journal of Vibration and Shock, 2013, 32 (6): 54-62
 

PDF(1085 KB)

Accesses

Citation

Detail

段落导航
相关文章

/