冲击荷载下纤维砂浆动态受压特性

田正宏1,2 江桂林 苏伟豪1 倪军2

振动与冲击 ›› 2018, Vol. 37 ›› Issue (1) : 90-97.

PDF(2992 KB)
PDF(2992 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (1) : 90-97.
论文

冲击荷载下纤维砂浆动态受压特性

  • 田正宏1,2 江桂林  苏伟豪1 倪军2
作者信息 +

Dynamic compressive properties of fiber mortar subjected to impact load

  • TIAN Zhenghong1, JIANG Guilin1, SU Weihao1,Ni Jun2
Author information +
文章历史 +

摘要

采用霍普金森压杆冲击试验,系统研究了掺超高分子量聚乙烯(UHMWPE)、聚乙烯醇(PVA)新型纤维砂浆动态受压力学性能;对比纤维砂浆破坏过程的应力-应变曲线,分析应变率和纤维种类对砂浆强度及韧性影响。研究表明:UHMWPE纤维砂浆的综合性能最优,日产PVA纤维砂浆次之,国产PVA纤维砂浆略差。基于传统损伤黏弹性理论,提出了纤维砂浆的简化四参数本构模型;与试验结果比较表明,该简化模型能够很好地模拟纤维砂浆的冲击动态压缩应力应变关系。

Abstract

The split Hopkinson pressure bar impact test was used to systematically study the dynamic compressive properties of fiber mortar doped with ultra-high molecular weight polyethylene (UHMWPE) and polyvinyl alcohol (PVA). The effects of strain rate and fiber type on mortar’s strength and toughness were analyzed according to the stress-strain curves during the specimen’s failure process. The results show that the comprehensive performance of UHMWPE fiber mortar is the best, that of the Japanese PVA fiber mortar is the second, and that of the domestic PVA fiber mortar is slightly poor. A simplified constitutive model with four parameters of the fiber mortar was proposed based on the theory of traditional viscoelastic damage. Comparing with the test results, it is shown that the model can well simulate the dynamic compressive stress-strain relationship of the fiber mortar subjected to impact load..

关键词

UHMWPE纤维 / PVA纤维 / 纤维砂浆 / 动态力学特性 / 本构模型

Key words

UHMWPE fiber / PVA fiber / Fiber mortar / Dynamic mechanical properties / Constitutive model

引用本文

导出引用
田正宏1,2 江桂林 苏伟豪1 倪军2. 冲击荷载下纤维砂浆动态受压特性[J]. 振动与冲击, 2018, 37(1): 90-97
TIAN Zhenghong1, JIANG Guilin1, SU Weihao1,Ni Jun2. Dynamic compressive properties of fiber mortar subjected to impact load[J]. Journal of Vibration and Shock, 2018, 37(1): 90-97

参考文献

[1].A Cavdar. A Study on the effects of high temperature on mechanical properties of fiber reinforced cementitious composites [J].Composites, 2012, 43(5):2452-2463.
[2].Q Kang, Y Fang, H Deng. Mechanical properties and crack-resistance of cement mortar with Basalt/Polypropylene Hybrid Fiber. Materials Review, 2011, 25:122-126.
[3].KT Soe, YX Zhang, LC Zhang. Material properties of a new hybrid fiber-reinforced engineered cementitious composite [J].Construction and Building Materials, 2013, 43(3):399-407.
[4].B Jaroslaw, S Barbara, J Patryk. The comparison of low velocity impact resistance of aluminum/carbon and glass fiber metal laminates [J]. Polymer Composites, 2014, 37(4):1056-1063.
[5].Leila Soufeiani, Sudharshan N.Raman, et al Influences of the volume fraction and shape of steel fiber-reinforced concrete subjected to dynamic loading-A review [J]. Engineering Structures, 2016, 124: 405-417.
[6].C Jiao, W Sun, H Shi, et al. Behavior of steel fiber-reinforced high-strength concrete at medium strain rate [J].Frontiers of Architecture and Civil Engineering in china,2009,3(2):131-136.
[7].WB Bao, SF Zhang, GH Di, et al. Dynamic Load Effects of PVA Tail sand Cement Base Composite Materials[J].Applied Mechanics and materials,2014,518:66-70.
[8].Z Chen, Y Yang, et al. Effect of water binder ratio on dynamic mechanical properties of PVA fiber reinforced cement-based composite [J], Romanian journal of materials.2012,42(3):256-263.
[9].Ross C A, Thompson P Y, Tedesco J W. Split Hopkinson pressure bar tests on concrete and mortar in tension and compression[J].ACI Material Journal,1989,86(5):475-481.
[10].Dai F, Huang S, Xia K, et al. Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar [J]. Rock Mechanics and Rock Engineering, 2010, 43:657-666.
[11].Xudong Chen, Shengxing Wu, Jikai Zhou. Quantification of dynamic tensile behavior of cement-based materials. Construction and building materials, 51(2014):15-23.
[12].Xudong Chen, Limei Ge, Jikai Zhou, et al. Experimental study on split Hopkinson Pressure Bar Pulse-Shaping Techniques for concrete.
[13].李为民, 许金余, 沈刘军,等. Φ100mmSHPB应力均匀及恒定应变率加载试验技术研究[J].振动与冲击.2008,27(2):129-132.
Li Weimin, Xu Jinyu, Shen Liu-jun, et al. Study on 100-mm-diameter SHPB techniques of dynamic stress equilibrium and nearly constant strain rate loading[J].Journal of Vibration and Shock,2008,27(2):129-132.
[14].Frew D J, Forrestal M J, Chen W. Pulse-shaping techniques for testing brittle materials with a split Hopkinson pressure bar [J]. Experimental Mechanics, 2002,42(1):93-106.
[15].赵习金, 卢芳云, 王悟,等. 入射波整形技术的实验和理论研究[J].高压物理学报,2004,18(3):231-236.
Zhao Xijin, Lu Fangyun,Wangwu, et al. The experimental and theoretical study on the incident pulse shaping technique[J].Chinese Journal of High Pressure Physics,2004,18(3):231-236.
[16].杨黎明, 朱兆祥, 王礼立. 短纤维增强对聚碳酸酯非线性粘弹性性能的影响[J]. 爆炸与冲击.1986,6(1): 1—9.
Yang L M, Zhu Z X, Wang L L.1986. Effects of short-glass-fiber reinforcement on nonlinear viscoelastic behavior of polycarbonate. Explosion and shock waves,6(1):1-9.
[17].陈江瑛, 王礼立.水泥砂浆的率型本构方程[J].宁波大学学报,2000,13(2):1—5.
Chen Jiangying, Wang Lili. Rate-dependent constitutive equation of cement mortar[J].Journal of Ningbo university, Natural Science and Engineering,2000,13(2):1-5.
[18].胡时胜, 王道荣, 刘剑飞. 混凝土材料力学性能的实验研究[J].工程力学,2001,18(5): 115—118.
Hu Shisheng, Wang Daorong, Liu Jianfei. Experiment study of dynamic mechanical behavior of concrete[J].Engineering Mechanics,2001,18(5):115-118.
[19].Wang L L, Zhou F H, Sun Z J, et al. Studies on rate-dependent maro-damage evolution of materials at high strain rates[J].International Journal of Damage Mechanics,2010,19:805-820.

PDF(2992 KB)

Accesses

Citation

Detail

段落导航
相关文章

/