基于模态测试的宽幅钢箱梁桥有限元模型建立、修正与分析

谢伟平1,曹晓宇1,肖伯强2,刘海庆2

振动与冲击 ›› 2018, Vol. 37 ›› Issue (1) : 98-105.

PDF(3183 KB)
PDF(3183 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (1) : 98-105.
论文

基于模态测试的宽幅钢箱梁桥有限元模型建立、修正与分析

  •  谢伟平1,曹晓宇1,肖伯强2,刘海庆2
作者信息 +

Finite element modeling, modification and analysis for wide steel box-girder bridges , based on modal tests

  •   XIE Weiping1 , CAO Xiaoyu1, Xiao Boqiang2, Liu Haiqing2
Author information +
文章历史 +

摘要

建立精确的宽幅钢箱梁桥有限元模型对此类结构的动力性能评估与结构设计有着重要的意义。本文建立了宽幅钢箱梁桥精细三维有限元模型,对宽幅钢箱梁桥不同施工阶段开展基于环境激励作用下的模态测试,采用随机子空间法与峰值拾取法识别桥梁的前十二阶模态,基于模态识别结果采用响应面法对桥梁有限元模型进行修正,详细分析了桥梁铺装层、邻跨等效质量对桥梁模态的影响。分析结果表明:本文建立的有限元模型具有较高的精度;铺装层会显著降低桥梁各阶自振频率,邻跨等效质量对桥梁的横向与扭转频率有显著的影响。

Abstract

An accurate finite element model for wide steel box-girder bridges is very important for the evaluation of structural dynamic performance and the structural design. A sophisticated finite element model was presented for a certain wide steel box-girder bridge. Modal tests in various stages of construction were carried out based on the field ambient vibration excitation. The stochastic subspace identification and peak picking of the average normalized power spectral densities were used to identify the bridge’s dynamic characteristics. The response surface method based on the dynamic characteristics identification was adopted to update the FEM. And the influences of the paving, equivalent masses of adjacent bridges on the bridge’s natural frequencies were discussed. The results show that the FEM established is quite accurate, the paving will lead to the huge decrease of natural frequency, and equivalent masses of adjacent bridges have significant effect on the lateral and torsional frequencies.

关键词

宽幅钢箱梁桥 / 模态测试 / 有限元模型 / 模型修正 / 动力特性

Key words

wide steel box-girder bridge / modal test / finite element model / model updating / dynamic characteristics

引用本文

导出引用
谢伟平1,曹晓宇1,肖伯强2,刘海庆2. 基于模态测试的宽幅钢箱梁桥有限元模型建立、修正与分析[J]. 振动与冲击, 2018, 37(1): 98-105
XIE Weiping1,CAO Xiaoyu1, Xiao Boqiang2, Liu Haiqing2 . Finite element modeling, modification and analysis for wide steel box-girder bridges , based on modal tests[J]. Journal of Vibration and Shock, 2018, 37(1): 98-105

参考文献

[1] 张庆, 史家钧, 胡振东. 车辆-桥梁耦合作用分析[J]. 力学季刊, 2003, 24(4):577-584.
Zhang Qing, Shi Jiajun, Hu Zhendong. Coupled interaction analysis on vehicle-bridge system[J]. Chinese Quarterly of Mechanics, 2003, 24(4):577-584.
[2] 谭国辉. 桥梁与车辆相互作用的系统模拟[J].土木工程学报, 1996, 29(3):34-42.
Tan Guohui. Modeling of the bridge-vehicle interaction system[J]. China Civil Engineering Journal, 1996, 29(3):34-42.
[3] 韩万水, 王涛, 李永庆, 等. 基于模型修正梁格法的车桥耦合振动分析系统[J].中国公路学报, 2011, 24(5):47-55.
Han Wanshui, Wang Tao, Li Yongqing, et al. Analysis System of vehicle-bridge coupling vibration with grillage method
based on model updating[J]. China Journal of Highway and Transport, 2011, 24(5):47-55.
[4] Luo Q Z, Tang J, Li Q S. Finite segment method for shear lag analysis of cable-stayed bridges[J]. Journal of Structural Engineering, 2002, 128(12):1617-1623.
[5] Wu Y P, Liu S Z, Zhu Y L, et al. Matrix analysis of shear lag and shear deformation in thin-walled box beam[J]. Journal of Engineering Mechanics, 2003, 129(8):944-950.
[6] 郭铁钧. 高架桥宽幅钢箱梁顶推施工技术[J].铁道标准设计, 2009,5(26):56-58.
Guo Tiejun. Wide steel box girder pushing construction technology [J]. Railway Standard Design, 2009,5(26):56-58.
[7] 陈晓龙. 钢箱梁在弯扭联合作用下的强度研究[D].长沙: 湖南大学, 2013: 41-74.
Chen Xiaolong. Research on intensity of steel box girder under combined bending and torsion[D]. Changsha: Hunan University, 2013: 41-74.
[8] Wei-Xin Ren, Xue-Lin Peng. Baseline finite element modeling of a large span cable-stayed bridge through field ambient vibration tests [J]. Computer and Structures, 2005, 83(8): 536-550.
[9] 何卫,谢伟平. 基于舒适度评价的大跨度车站结构精细化模型研究[J]. 土木工程学报, 2014, 47(1):13-23.
He Wei, Xie Weiping. Study on sophisticated calculation model of large-span railway station structures based on vibration serviceability evaluation [J]. China Civil Engineering Journal, 2014, 47(1):13-23.
[10] 谭德先, 周云, 米斯特, 等. 环境激励下高层建筑结构模态测试与有限元建模分析[J].土木工程学报, 2015, 48(9):41-50.
Tan Dexian, Zhou Yun, Mi Site, et al. Ambient vibration dynamic test and finite element analysis for high-rise buildings [J]. China Civil Engineering Journal, 2015, 48(9):41-50.
[11] 宗周红, 赖苍林, 林友勤, 等. 大跨度预应力混凝土连续刚构桥的动力特性分析[J].地震工程与工程振动, 2004,24(3):98-104.
Zong Zhouhong, Lai Canglin, Lin Youqin, et al. Analysis of dynamic characteristic of a large-span prestressed concrete continuous rigid frame bridge[J]. Earthquake Engineering and Engineering Vibration[J] , 2004,24(3):98-104.
[12] 余印根, 宗周红, 陈宝春,等. 环境温度对连续刚构桥模态频率的影响[J]. 振动、测试与诊断, 2014, 34(1):69-76.
Yu Yingen, Zong Zhouhong, Chen Baochun, et al. Effects of environmental temperature on modal frequency of continuous rigid frame bridge[J]. Journal of Vibration, Measurement & Diagnosis , 2014, 34(1): 69-76.
[13] 夏樟华, 宗周红. 预应力对混凝土梁动力特性的影响分析[J].振动与冲击, 2007, 26(7):129-134.
Xia Zhanghua, Zong Zhouhong. Analysis of influence of prestressing of dynamic characteristics of a concrete beam[J].Journal of Vibration and Shock, 2007, 26(7):129-134.
[14] 殷广庆. 梁式桥有限元模型建立与修正及其应用[D]. 大连: 大连理工大学, 2013: 8-17.
Yin Guangqin. Finite elements modeling and updating of the girder bridge and its applications [D]. Dalin: Dalian University of Technology, 2013:8-17.
[15] 崔建功. 宽钢箱梁精细化模型的车桥耦合振动分析[D]. 重庆: 重庆交通大学, 2014: 61-66.
Cui Jiangong. Analysis on the vehicle-bridge coupled vibration of the wide box girder detailed bridge model [D]. Chongqing: Chongqing Jiaotong University, 2014:61-66.
[16] 刘合旭. 宽幅连续箱梁桥车桥耦合振动分析[D]. 西安: 长安大学, 2011: 45-48.
Liu Hexu. Analysis of vehicle-bridge coupling vibration of wide continuous box-girder bridge[D]. Xi’an: Chang’an University , 2011: 45-48.
[17] Reissner E. Analysis of shear lag in box beams by the principle of minimum potential energy[J]. Quarterly of Applied Mathematics, 1946, 5(3):268-278.
[18] 中华人民共和国交通部. JTG D63-2007. 公路桥涵地基与基础设计规范[S].北京:人民交通出版社,2007.
Ministry of Transport of the People’s Republic of China. JTG D63-2007. Code for Design of Ground Base and Foundation of Highway Bridges and Culverts [S]. Beijing: China Communications Press, 2007.
[19] 战家旺, 夏禾, 李泽新, 等. 考虑土体摩擦效应的公路桥墩动力特性分析方法[J]. 土木工程学报, 2013, 46(10):74-80.
Zhan Jiawang, Xia He, Li Zexin, et al. A method for dynamic characteristic analysis of roadway bridge piers considering soil friction effects [J]. China Civil Engineering Journal, 2013, 46(10):74-80.
[20] Mottershead J E, Friswell M L. Model Updating in Structural Dynamic [J]. Journal of Sound and Vibration, 1993,167(2):347-375.
[21] Jones D R. A taxonomy of global optimization methods based on response surfaces[J].Journal of Global Optimization, 2001, 21(4): 345-383.
[22] 苏金明, 阮沈勇, 王永利. MATLAB工程数学[M]. 北京:电子工业出版社, 2005:260-261.
Su Jinming, Ruan Shenyong, Wangyongli. MATLAB Engineering Mathematics[M]. Beijing: Publishing House of Electronics Industry, 2005: 260-261.
[23] 张文学, 苏木标, 高军. 墩梁频率比对桥跨结构动力性能的影响研究[J]. 铁道标准设计, 2004, 36(8): 96-98.
Zhang Wenxue, Su Mubiao, Gao Jun. A research over the impact of pier-beam frequency ratio on the dynamic performance of bridge span structure [J].Railway Standard Design, 2004, 36(8): 96-98.
[24] 岳祖润. 铁路桥梁三维耦合振动仿真与墩台状态评估[D].北京: 铁道部科学研究院, 2002: 44-60.
Yue Zurun. Simulation on coupled 3D-vibration model of railway bridges and condition assessment of piers and abutment [D]. Beijing: China Academy of Railway Sciences, 2002: 44-60.

PDF(3183 KB)

Accesses

Citation

Detail

段落导航
相关文章

/