高体积优值系数振动能量采集器的设计与性能测试

任龙1,陈仁文1,Stephen Burrow2,夏桦康1,张笑笑1

振动与冲击 ›› 2018, Vol. 37 ›› Issue (10) : 102-109.

PDF(1282 KB)
PDF(1282 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (10) : 102-109.
论文

高体积优值系数振动能量采集器的设计与性能测试

  • 任龙1,陈仁文1,Stephen Burrow2,夏桦康1,张笑笑1
作者信息 +

Design and performance test of a high volumetric Figure of Merit  electromagnetic vibration energy harvester

  • REN Long1,CHEN Renwen1,Stephen Burrow2,XIA Huakang1,ZHANG Xiaoxiao1
Author information +
文章历史 +

摘要

小尺寸振动能量采集器通常难以高效采集低频振动能量。为提高能量采集效率,设计了一种高体积优值系数磁电式能量采集器。采用集总参数等效磁路模型对其换能系统的部分结构参数进行了优化,以提高感应线圈运动区域中运动方向上的磁链梯度,通过有限元分析验证了解析模型和理论结果。最后分别制作了3台不同参数的样机进行实验。实验结果表明,振动激励频率22.5Hz、加速度幅值为100mg时,经过参数优化的振动能量采集器能够在匹配负载上输出0.748mW的平均功率,相应的体积优值系数达到了1.11%,优于其他两台样机在各自共振状态下的0.31%和0.77%。研究表明,通过合理优化磁电换能系统磁路,能够提高能量采集器的体积优值系数,是低频振动能量采集器小型化的一种实现途径。

Abstract

Smallscale vibration energy harvesters that can work at low frequencies efficiently are challenging to realize. To increase their energy harvesting efficiency, a type of high volumetric Figure of Merit magnetoelectric vibration energy harvester was proposed. To increase the magnetic linkage gradient of its coil in moving direction and in its motion region, a lumped parameters equivalent magnetic circuit model was adopted in its magnetic structural parameters optimization. A finite element analysis was then used to verify the analytical model and theoretical results. Finally, 3 prototypes with different parametric combinations were manufactured and fabricated for experiments. The experimental results indicate that the average output power over its matched load resistance can reach 0.748 mW under the excitation of 22.5 Hz and 100 mg. The corresponding volumetric Figure of Merit can reach 1.11%, which is higher than those of the other two prototypes (volumetric Figure of Merit of 0.31% and 0.77% in their own resonances). The research shows that, by the rational optimization of its magnetic circuit of the magnetoelectric transducer, the energy harvester can increase its volumetric Figure of Merit efficiently. It can be a realizing miniaturization method for low frequency vibration energy harvesters.

关键词

振动能量采集器 / 磁电式 / 体积优值系数 / 等效磁路模型 / 有限元分析

Key words

vibration energy harvester / magnetoelectric / volumetric Figure of Merit / equivalent magnetic circuit model / finite element analysis

引用本文

导出引用
任龙1,陈仁文1,Stephen Burrow2,夏桦康1,张笑笑1. 高体积优值系数振动能量采集器的设计与性能测试[J]. 振动与冲击, 2018, 37(10): 102-109
REN Long1,CHEN Renwen1,Stephen Burrow2,XIA Huakang1,ZHANG Xiaoxiao1. Design and performance test of a high volumetric Figure of Merit  electromagnetic vibration energy harvester[J]. Journal of Vibration and Shock, 2018, 37(10): 102-109

参考文献

[1] Pickavet M, Vereecken W, Demeyer S, et al. Worldwide energy needs for ICT: The rise of power-aware networking[C]//2008 2nd International Symposium on Advanced Networks and Telecommunication Systems. IEEE, 2008: 1-3.
[2] Lin L, Hu Y, Xu C, Zhang Y, Zhang R, Wen X, Wang ZL. Transparent flexible nanogenerator as self-powered sensor for transportation monitoring [J]. Nano Energy, 2013, 2(1):75-81.
[3] Kulah H, Najafi K. Energy scavenging from low-frequency vibrations by using frequency up-conversion for wireless sensor applications[J]. IEEE Sensors Journal, 2008, 8(3): 261-268.
[4] Williams C B, Yates R B. Analysis of a micro-electric generator for microsystems[J]. sensors and actuators A: Physical, 1996, 52(1): 8-11.
[5]Dhakar L, Liu H, Tay F E H, et al. A new energy harvester design for high power output at low frequencies[J].Sensor Actuat A-Phys , 2013, 199(9):344–352.
[6]侯志伟, 陈仁文, 刘祥建. 多方向压电振动能量收集装置及其优化设计[J]. 振动与冲击, 2012, 31(16): 33-37.
Hou Zhiwei,Chen Renwen,Liu Xiangjian. Optimization design of multi-directional piezoelectric vibration energy harvester [J]. Journal of Vibration and Shock, 2012, 31(16): 33-37.
[7]Jing R, Chen X Y. Design of MEMS hybrid energy generator for multi-frequency vibration[J]. Optics & Precision Engineering, 2009, 17(6):1367-1372.
[8]王佩红, 戴旭涵, 赵小林. 微型电磁式振动能量采集器的研究进展[J]. 振动与冲击, 2007, 26(9):94-98.
Wang Peihong, Dai Xuhan, Zhao Xiaolin. A survey of micro electromagnetic vibration energy harvesters [J]. Journal of Vibration and Shock, 2007, 9(26): 94- 98.
[9]Bai X, Wen Y, Li P, et al. Multi-modal vibration energy harvesting utilizing spiral cantilever with magnetic coupling[J].Sensor Actuat A-Phys , 2014, 209: 78-86.
[10]李伟, 车录锋, 王跃林. 横向电磁式振动能量采集器的设计与制作[J]. 光学精密工程, 2013,21(3): 694-700.
Li Wei, Che Lufeng, Wang Yuelin. Design and fabrication of transverse electromagnetic vibration energy harvester [J]. Optics and Precision Engineering, 2013, 21(3): 694-700.
[11]Mitcheson P D, Miao P, Stark B H, et al. MEMS electrostatic micropower generator for low frequency operation[J].Sensor Actuat A-Phys , 2004, 115(2): 523-529.
[12]Basset P, Galayko D, Paracha A M, et al. A batch-fabricated and electret-free silicon electrostatic vibration energy harvester[J]. Journal of Micromechanics & Microengineering, 2009, 19(11):115025-12.
[13]Mitcheson P D, Yeatman E M, Rao G K, et al. Energy harvesting from human and machine motion for wireless electronic devices[J]. Proceedings of the IEEE, 2008, 96(9): 1457-1486.
[14]Ashraf K, Khir M H M, Dennis J O, et al. A wideband, frequency up-converting bounded vibration energy harvester for a low-frequency environment[J]. Smart materials and structures, 2013, 22(2): 025018.
[15]Ching N N H, Wong H Y, Li W J, et al. A laser-micromachined vibrational to electrical power transducer for wireless sensing systems[M]//Transducers’ 01 Eurosensors XV. Springer Berlin Heidelberg, 2001: 38-41.
[16]Berdy D F, Srisungsitthisunti P, Xu X, et al. Compact low frequency meandered piezoelectric energy harvester[J]. PowerMEMS (Washington, DC), 2009: 71-4.
[17]Galchev T, Kim H, Najafi K. A parametric frequency increased power generator for scavenging low frequency ambient vibrations[J]. Procedia Chemistry, 2009, 1(1): 1439-1442.
[18]Sardini E, Serpelloni M. An efficient electromagnetic power harvesting device for low-frequency applications[J]. Sensors and Actuators A: Physical, 2011, 172(2): 475-482.
[19]Renaud M, Fiorini P, van Schaijk R, et al. Harvesting energy from the motion of human limbs: the design and analysis of an impact-based piezoelectric generator[J]. Smart Materials and Structures, 2009, 18(3): 035001.
[20]Galchev T V, McCullagh J, Peterson R L, et al. Harvesting traffic-induced vibrations for structural health monitoring of bridges[J]. Journal of Micromechanics and Microengineering, 2011, 21(10): 104005.
[21]Zhu D, Beeby S, Tudor J, et al. Vibration energy harvesting using the Halbach array[J]. Smart Materials and Structures, 2012, 21(7): 075020.
[22]Ayala I N, Zhu D, Tudor M J, et al. Autonomous tunable energy harvester[J]. Proc. PowerMEMS, 2009: 49-52.
[23]Nico V, Boco E, Frizzell R, et al. A high figure of merit vibrational energy harvester for low frequency applications[J]. Applied Physics Letters, 2016, 108(1): 013902.
[24]Boco E, Nico V, O'Donoghue D, et al. Optimization of coil parameters for a nonlinear two Degree-of-Freedom (2DOF) velocity-amplified electromagnetic vibrational energy harvester[C]//Smart Cities and Green ICT Systems (SMARTGREENS), 2015 International Conference on. IEEE, 2015: 1-10.
[25] Frizzell R, Kelly G, Cottone F, et al. Experimental characterisation of dual-mass vibration energy harvesters employing velocity amplification[J]. Journal of Intelligent Material Systems and Structures, 2016: 1045389X16642030.

PDF(1282 KB)

4228

Accesses

0

Citation

Detail

段落导航
相关文章

/