铝蜂窝填砂复合夹芯结构的低速冲击响应试验研究

罗伟铭1,石少卿1,孙建虎1, 刘盈丰2

振动与冲击 ›› 2018, Vol. 37 ›› Issue (10) : 50-56.

PDF(1919 KB)
PDF(1919 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (10) : 50-56.
论文

铝蜂窝填砂复合夹芯结构的低速冲击响应试验研究

  • 罗伟铭1,石少卿1,孙建虎1, 刘盈丰2
作者信息 +

Experimental investigation on the low velocity impact responses of san filled aluminum honeycomb composite sandwich structures

  • LUO Weimin1 SHI Shaoqing1 SUN Jianhu1 LIU Yingfeng2
Author information +
文章历史 +

摘要

以防护结构设计为背景,提出一种铝蜂窝填砂复合夹芯结构。从理论角度对填砂蜂窝模型进行力学分析,通过落锤冲击试验,对不同芯层规格的试件在梯度能级冲击下的响应进行了对比,根据荷载、位移和挠度的变化规律和破坏模式得到以下结论:在低能级冲击下,蜂窝芯层较软的试件填砂后对于其结构强度和刚度的提升作用较为明显,同时,在铝蜂窝质量相同的前提下,优先选择蜂窝胞元较小、高度较低的蜂窝作为填砂复合夹芯结构的芯层,可提高结构比强(刚)度;在高能级冲击下,当芯层高度达到一定值时,变形挠度减小,破坏范围缩小为局部贯穿破坏,芯层填砂对结构抗冲击性能产生较为积极的影响。研究结果为铝蜂窝填砂复合夹芯结构在防护结构中的应用奠定了基础。

Abstract

With the background of a protective structure designing, a kind of sandfilled aluminum honeycomb composite sandwich structures was put forward. The simplified sandfilled honeycomb model was analyzed from the standpoint of mechanics. By drop weight impact tests, the specimens with different core specifications were compared with the emptycore specimens under gradient impact. By comparing the changing of the impact load, the displacement of impactor, the deflection and the damage mode of specimens, some conclusions were drawn as follows: under lowenergy impact, the effect of filling sand on the strength promoting of the honeycomb structure with softer core and on the reducing of its deflection was relatively better; on the premise of the same mass, the honeycomb with smaller size and smaller height should be given priority to be adopted as the core of sandfilled composite sandwich structures for improving the specific strength or stiffness; under highenergy impact, as the core layer height reaches a certain value, the deflection of specimen decreases, and the damage scope is narrowed down to a local area with fully penetration. Filling sand in the honeycomb is beneficial to the improvement of impact resistance. The research provides a basis for the practical application of sandfilled aluminum honeycomb composite sandwich structures in protection.

关键词

铝蜂窝 / 填砂 / 夹芯结构 / 低速冲击

Key words

aluminum honeycomb / sand-filled / sandwich structure / low velocity impact

引用本文

导出引用
罗伟铭1,石少卿1,孙建虎1, 刘盈丰2. 铝蜂窝填砂复合夹芯结构的低速冲击响应试验研究[J]. 振动与冲击, 2018, 37(10): 50-56
LUO Weimin1 SHI Shaoqing1 SUN Jianhu1 LIU Yingfeng2. Experimental investigation on the low velocity impact responses of san filled aluminum honeycomb composite sandwich structures[J]. Journal of Vibration and Shock, 2018, 37(10): 50-56

参考文献

[1] 胡建国, 马大为, 乐贵高, 等. 蜂窝材料率相关本构模型及其在月球探测器中的应用研究[J]. 振动与冲击, 2014, 33(7):114-119.
HU Jianguo, MA Dawei, LE Guigao, et al. A rate-dependent constitutive model for honeycomb material and its application in lunar lander [J]. Journal of Vibration and Shock, 2014, 33(7):114-119.
[2] 任鹏, 张伟, 刘建华, 等. 水下冲击波作用的铝合金蜂窝夹层板动力学响应研究[J]. 振动与冲击, 2016, 35(2):7-11.
REN Peng, ZHANG Wei, LIU Jianhua, et. al. Dynamic analysis of aluminum alloy honeycomb core sandwich panels subjected to underwater shock loading[J]. Journal of Vibration and Shock, 2016, 35(2):7-11.
[3] BELINGARDI G, MARTELLA P, PERONI L. Fatigue analysis of honeycomb-composite sandwich beams[J]. Composites Part A Applied Science & Manufacturing, 2007, 38(4):1183-1191.
[4] AKATAY A, BORA M Ö, ÇOBAN O, et al. The influence of low velocity repeated impacts on residual compressive properties of honeycomb sandwich structures[J]. Composite Structures, 2015, 125:425-433.
[5] YANG J S, MA L, SCHMIDT R, et al. Hybrid lightweight composite pyramidal truss sandwich panels with high damping and stiffness efficiency[J]. Composite Structures, 2016, 148:85-96.
[6] ZHANG G, WANG B, MA L, et al. Energy absorption and low velocity impact response of polyurethane foam filled pyramidal lattice core sandwich panels[J]. Composite Structures, 2014, 108(1):304-310.
[7] MOHMMED R, ZHANG F, SUN B, et al. Static and low-velocity impact on mechanical behaviors of foam sandwiched composites with different ply angles face sheets[J]. Journal of Composite Materials, 2014, 48(10):1173-1188.
[8] WANG H, RAMAKRISHNAN K R, SHANKAR K. Experimental study of the medium velocity impact response of sandwich panels with different cores[J]. Materials & Design, 2016, 99:68-82.
[9] WANG H, RAMAKRISHNAN K R, SHANKAR K. Experimental study of the medium velocity impact response of sandwich panels with different cores[J]. Materials & Design, 2016, 99:68-82.
[10] ZHANG T, YAN Y, LI J, et al. Low-velocity impact of honeycomb sandwich composite plates[J]. Journal of Reinforced Plastics & Composites, 2015, 35.
[11] 彭蒙, 刘龙权, 赵剑,等. 芯体壁厚对Nomex蜂窝夹层结构抗冲击性能的影响[J]. 振动与冲击, 2016, 35(21):177-182.
PENG Meng, LIU Longquan, ZHAO Jian, et. al. Effect of resin layer thickness on impact resistance performance of nomex honeycomb sandwich structures[J]. Journal of Vibration and Shock, 2016, 35(21):177-182.
[12] WANG D, BAI Z. Mechanical property of paper honeycomb structure under dynamic compression[J]. Materials & Design, 2015, 77:59-64.
[13] HAN B, QIN K, YU B, et al. Honeycomb-corrugation hybrid as a novel sandwich core for significantly enhanced compressive performance[J]. Materials & Design, 2016, 93:271-282.
[14] MOZAFARI H, KHATAMI S, MOLATEFI H. Out of plane crushing and local stiffness determination of proposed foam filled sandwich panel for Korean Tilting Train eXpress – Numerical study[J]. Materials & Design, 2015, 66:400-411.
[15] ZHANG G, WANG B, MA L, et al. Energy absorption and low velocity impact response of polyurethane foam filled pyramidal lattice core sandwich panels[J]. Composite Structures, 2014, 108(1):304-310.
[16] SHI S S, SUN Z, HU X Z, et al. Flexural strength and energy absorption of carbon-fiber–aluminum-honeycomb composite sandwich reinforced by aluminum grid[J]. Thin-Walled Structures, 2014, 84:416–422.
[17] SHI S S, SUN Z, HU X Z, et al. Carbon fiber and aluminum honeycomb sandwich composites with and without Kevlar-fiber interfacial toughening[J]. Composites Part A Applied Science & Manufacturing, 2014, 67:102–110.
[18] 王闯, 刘荣强, 邓宗全, 等. 铝蜂窝结构的冲击动力学性能的试验及数值研究[J]. 振动与冲击, 2008, 27(11):56-61.
WANG Chuang, LIU Rongqiang, DENG Zongquan, et al. Experimental and numerical studies on aluminum honeycomb structure with various cell specifications under impact loading[J]. Journal of Vibration and Shock, 2008, 27(11):56-61.
[19] Zhang J, Ashby M F. The out-of-plane properties of honeycombs[J]. International Journal of Mechanical Sciences, 1992, 34(6):475-489.
[20] 赵国伟, 白俊青, 祁玉峰, 等. 异面冲击下金属蜂窝结构平均塑性坍塌应力模型[J]. 振动与冲击, 2016, 35(12):50-54.
ZHAO Guowei, BAI Junqing, QI Yufeng, et. al. Average plastic collapse stress model of metallica honeycomb structure under out-of-plane impact load[J]. Journal of Vibration and Shock, 2016, 35(12):50-54.

PDF(1919 KB)

Accesses

Citation

Detail

段落导航
相关文章

/