IHB法在多自由度Bouc-Wen滞回非线性系统响应特性研究中的应用

赵 倩1,刘子良2,姚红良2,闻邦椿2

振动与冲击 ›› 2018, Vol. 37 ›› Issue (10) : 57-62.

PDF(2347 KB)
PDF(2347 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (10) : 57-62.
论文

IHB法在多自由度Bouc-Wen滞回非线性系统响应特性研究中的应用

  • 赵  倩1,刘子良2,姚红良2,闻邦椿2
作者信息 +

Application of the IHB method to study the response characteristics of multi DOF systems with Bouc Wen hysteretic nonlinearity

  • ZHAO Qian1, LIU Zi-liang2, YAO Hong-liang2, WEN Bang-chun2
Author information +
文章历史 +

摘要

工程中常用Bouc-Wen模型来描述具有滞回特性的振动系统,此类系统是一种多值性的非解析系统,其动力学理论分析比较困难。由于Bouc-Wen滞回模型的微分形式,一般采用数值方法进行积分求解,但对于多自由度系统来说求解速度非常慢,且难以求得不稳定解。故提出将滞回力引入为一个增加的自由度,重新建立振动系统的微分方程,将增量谐波平衡(IHB)法推广至求解该类含Bouc-Wen模型的多自由度滞回非线性系统,并引入弧长法解决由迟滞非线性引起的跳跃和多映射现象。利用该法分析了一些滞回系统的响应特性,通过与数值方法进行精度和效率对比,体现了该方法的优越性。

Abstract

The BoucWen model is commonly used to depict hysteretic nonlinear vibration systems in engineering, but the dynamic analysis of such system is difficult due to its multivalued and nonanalytic properties. Numerical integration methods are usually utilized in view of the differential form of BoucWen model; however, it is timeconsuming when dealing with multidegreeoffreedom (multiDOF) systems and even cannot obtain instable solutions. Therefore, the way of considering the hysteretic force as an additional DOF and introducing it into the original system was proposed, thereby the vibration differential equation of the system was rebuilt. Then, the incremental harmonic balance (IHB) method was extended to the study on the response characteristics of such multiDOF hysteresis nonlinear systems with BoucWen model, and the arclength method was also introduced to settle the problems of jump and multimapping caused by hysteretic nonlinearity. Applying the present method, some response characteristics of the hysteretic system were analyzed. The efficiency and precision was verified by comparing with the Newmarkβ numerical integration.

关键词

滞回非线性 / Bouc-Wen模型 / 悬臂梁 / 增量谐波平衡法 / 弧长法

Key words

 hysteresis nonlinear / Bouc-Wen model / cantilever / IHB method / arc-length method

引用本文

导出引用
赵 倩1,刘子良2,姚红良2,闻邦椿2. IHB法在多自由度Bouc-Wen滞回非线性系统响应特性研究中的应用[J]. 振动与冲击, 2018, 37(10): 57-62
ZHAO Qian1, LIU Zi-liang2, YAO Hong-liang2, WEN Bang-chun2. Application of the IHB method to study the response characteristics of multi DOF systems with Bouc Wen hysteretic nonlinearity[J]. Journal of Vibration and Shock, 2018, 37(10): 57-62

参考文献

[1]  闻邦椿, 李以农, 张义民, 等. 振动利用工程[M]. 北京: 科学出版社, 2005.
[2]  李鸿光, 何旭, 孟光. Bouc-Wen滞回系统动力学特性的仿真研究[J]. 系统仿真学报, 2004, 16(9): 2009-2011.
Li Hongguang, He Xu, Meng Guang. Numerical simulation for dynamic characteristics of Bouc-Wen hysteretic system[J]. Journal of System Simulation, 2004, 16(9): 2009-2011.
[3]  赵新龙, 汪佳丽. 结合误差变换的Bouc-Wen 迟滞非线性系统反步控制器设计[J]. 控制理论与应用, 2014, 31(8): 1094-1098.
Zhao Xinlong, Wang Jiali. Backstepping control with error transformation for Bouc-Wen hysteresis nonlinear system[J]. Control Theory and Applications, 2014, 31(8): 1094-1098.
[4]  Li H G, Meng G. Nonlinear dynamics of a SDOF oscillator with Bouc–Wen hysteresis[J]. Chaos, Solitons and Fractals, 2007, 34: 337-343.
[5] Bouc R. Forced vibration of mechanical system with hysteresis[C]. Proceedings of the Fourth Conference on Nonlinear Oscillations, Prague, Czechoslovakia, 1967.
[6] Wen Y K. Method for random vibration of hysteretic systems[J]. ACSE of the Engineering Mechanics Division, 1976, 102(2): 249-263.
[7]  Ismail M, Ikhouane F, Rodellar J. The hysteresis Bouc-Wen model, a survey[J]. Archives of Computational Methods in Engineering, 2009, 16(2): 161-188.
[8]  Spencer B F, Dyke S J, Sain M K. Phenomenological model magneto rheological dampers[J]. Journal of Engineering Mechanics, 1997, 123(3): 230-238.
[9]  Arindam Bhattacharjee, Anindya Chatterjee. Dissipation in Bouc-Wen model: Small amplitude, large amplitude and two-frequency forcing[J]. Journal of Sound and Vibration, 2013, 332: 1807-1819.
[10] Kwok N M, Ha Q P, Nguyen M T, et al. Bouc–Wen model parameter identification for a MR fluid damper using computationally efficient GA[J]. ISA Transactions, 2007, 46: 167-179.
[11] Talatahari S, Kaveh A, Mohajer Rahbari N. Parameter identification of Bouc-Wen model for MR fluid dampers using adaptive charged system search optimization[J]. Journal of Mechanical Science and Technology, 2012, 26(8): 2523-2534.
[12] Zhu W, Rui X T. Hysteresis modeling and displacement control of piezoelectric actuators with the frequency- dependent behavior using a generalized Bouc–Wen model[J]. Precision Engineering, 2016, 44: 299-307.
[13] Guo Y, Mao J. Modeling of Hysteresis Nonlinearity Based on Generalized Bouc-Wen Model for GMA[J]. Springer Berlin Heidelberg, 2010, 6424(6): 147-158.
[14] 白鸿柏, 张培林, 黄协清. 粘性阻尼滞迟振子简谐激励响应的等效线性化计算方法研究[J]. 振动与冲击, 2000, 19(4): 44-47.
Bai Hongbai, Zhang Peiling, Huang Xieqing. Equivalent linearization approximate method for response computation of a bilinear hysteretic vibration with viscous damping under sinusoidal excitation[J]. Journal of Vibration and Shock, 2000, 19(4): 44-47.
[15] 曹树谦, 付耀东, 贺微波. 基于三次迟滞模型的超声电机圆环定子主共振响应[J]. 振动与冲击, 2009, 28(1): 36-41.
Cao Shuqian, Fu Yaodong, He Weibo. Primary resonance of a ring-type stator of ultrasonic motors based on cubic polynomial hysteresis model[J]. Journal of Vibration and Shock, 2009, 28(1): 36-41.
[16] 侯东晓, 刘彬, 时培明. 一类滞后相对转动动力学方程的分岔特性及其解析近似解[J]. 物理学报, 2009, 58(9): 5942-5949.
Hou Dongxiao, Liu Bin, Shi Peiming. The bifurcation of a kind of relative rotational dynamic equation with hysteresis and its approximate solution[J]. Acta Physica Sinca, 2009, 58(9): 5942-5949.
[17] Qian Zhao, Hongliang Yao, Qi Xu, Bangchun Wen. Prediction method for steady-state response of local rubbing blade-rotor systems[J]. Journal of Mechanical Science and Technology, 2015, 29(4): 1537-1545.
[18] Ferreira J V, Serpa A L. Application of the arc-length method in nonlinear frequency response[J]. Journal of Sound and Vibration, 2005, 284:133-149.
[19] Pieree C, Ferri A A, Dowell E H. Multi-harmonic analysis of dry friction damped systems using an incremental harmonic balance method[J]. ASME Journal of Applied Mechanics, 1985, 52(4): 959-964.
[20] 白鸿柏, 黄协清. 三次非线性粘性阻尼双线性滞迟振动系统IHB分析方法[J]. 西安交通大学学报, 1998, 32(10): 35-38.
Bai Hongbai, Huang Xieqing. Response of forced vibration of bilinear hysteretic oscillator[J]. Journal of Xi’an JIiaotong University, 1998, 32(10): 35-38.
[21] 熊蕊, 刘向东, 耿洁, 等. 一类二阶迟滞非线性控制系统简谐激励响应的IHB分析方法[J]. 振动与冲击, 2013,  32(13): 99-105.
Xiong Rui, Liu Xiangdong, Geng Jie, et al. IHB method for response computation of a case of second-order hysteretic nonlinear control systems under a sinusoidal excitation[J]. Journal of Vibration and Shock, 2013, 32(13): 99-105.

PDF(2347 KB)

1254

Accesses

0

Citation

Detail

段落导航
相关文章

/