针对复杂的离心式压缩机的叶轮叶片的载荷识别,提出了一种新的Hermitian小波壳单元。Hermitian小波壳单元代入逆Newmark算法构造激励载荷与响应信号的传递矩阵,从而进行载荷识别。通过响应信号与传递矩阵求解载荷。根据实验数据,Hermitian小波单元识别载荷的精度远远高于商业软件ANSYS。实际工程应用中,商业软件ANSYS可以分析复杂模型,而在关键区域可以采用Hermitian小波单元分析。
Abstract
New Hermitain cubic spline wavelet on interval (HCSWI) shell elements were proposed for the load identification of centrifugal compressor impeller blades. The Hermitian wavelet shell elements and the inverse Newmark algorithm were applied to construct the transfer matrix between excitation and response signals. The load identification was solved based on the transfer matrix method and response signals. The accuracy of the Hermitian wavelet shell elements was verified by comparing the load identification results with those by ANASYS elements as well as the experimental data. The Hermitian wavelet finite element method is of the advantage of high accuracy. In practical engineering, the commercial software ANSYS can be used to analyze a complex mechanical model, however, for the crucial components, the Hermitian wavelet elements might be used instead of ANSYS elements.
关键词
Hermitian小波壳单元 /
载荷识别 /
传递矩阵
{{custom_keyword}} /
Key words
Hermitian wavelet shell elements /
load identification /
transfer matrix
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王光存. 离心压缩机叶轮冲蚀磨损机理和规律的研究[D].济南:山东大学, 2015.
WANG Guangcun. Study on erosion wear mechanism and law of impeller in centrifugal compressor[D]. Jinan: Shandong university, 2015.
[2] Shibata T, Yagi M, Nishida H. Effect of Impeller Blade Loading on Compressor Stage Performance in a High Specific Speed Range[J]. Journal of Turbomachinery, 2010, 134 (4): 1757-1768.
[3] Shibata T, Yagi M, Nishida H. Performance Improvement of a Centrifugal Compressor Stage by Increasing Degree of Reaction and Optimizing Blade Loading of a Shrouded 3D Impeller[J]. Journal of Turbomachinery, 2009, 133 (2): 1305-1315.
[4] Krain H. A CAD-Method for Centrifugal Compressor Impellers[J]. Journal of Engineering for Gas Turbines & Power, 1983, 106 (1984): 1-7.
[5] Ubaldi M, Zunino P, Ghiglione A. Detailed flow measurements within the impeller and the vaneless diffuser of a centrifugal turbomachine[J]. Experimental Thermal & Fluid Science, 1998, 17 (1-2): 147-155.
[6] 陶丽桦, 王键, 刘艳. 叶片载荷分布对离心叶轮气动性能影响的数值研究[J]. 风机技术, 2015, 57 (6): 13-20.
TAO Lihua, WANG Jian, LIU Yan. Effect of the blade loading distribution on aerodynamic performance of centrifugal impeller[J]. Compressor Blower & Fan Technology, 2015,57 (6):13-20.
[7] XUE Xiaofeng, ZHANG Xingwu, LI Bing. Modified Hermitian cubic spline wavelet on interval finite element for wave propagation and load identification[J]. Finite Elements in Analysis & Design, 2014, 91 (91): 48-58.
[8] ZHANG Xingwu, GAO Robert X, YAN Ruqiang. Multivariable wavelet finite element-based vibration model for quantitative crack identification by using particle swarm optimization[J]. Journal of Sound & Vibration, 2016, 375: 200-216.
[9] Xue Xiaofeng, Chen Xuefeng, Zhang Xingwu. Hermitian plane wavelet finite element method: Wave propagation and load identification[J].Computers & Mathematics with Applications, 2016.
[10] Xue Xiaofeng, Chen Xxuefeng, Zhang Xingwu. Hermitian Mindlin Plate Wavelet Finite Element Method for Load Identification[J]. Shock and Vibration, 2016, 2016 (6): 1-24.
[11] Jehel P, Léger P, Ibrahimbegovic A. Initial versus tangent stiffness-based Rayleigh damping in inelastic time history seismic analyses[J]. Earthquake Engineering & Structural Dynamics, 2014, 43 (3): 467-484.
[12] YANG Zhibo , CHEN Xuefeng , XIE Yong. Hybrid two-step method of damage detection for platelike structures[J]. Structural Control & Health Monitoring, 2015, 23 (2): 267-285.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}