斜拉桥的多重内共振及其耦合过程研究

孙测世 1,赵珧冰 2,康厚军 3,赵跃宇 3

振动与冲击 ›› 2018, Vol. 37 ›› Issue (10) : 87-93.

PDF(1505 KB)
PDF(1505 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (10) : 87-93.
论文

斜拉桥的多重内共振及其耦合过程研究

  • 孙测世 1 ,赵珧冰 2,康厚军 3,赵跃宇 3
作者信息 +

Multiple internal resonances and coupling process of cablestayed bridge

  • SUN Ceshi 1  ZHAO Yaobing 2  KANG Houjun 3  ZHAO Yueyu 3
Author information +
文章历史 +

摘要

斜拉桥具有复杂的内共振特性,以往多是通过频率的倍数关系去研究多模态间的内共振,忽视了对耦合过程的研究。为研究其多重内共振及各模态相互耦合过程,进行了斜拉桥非线性动力学模型实验。实验观测到多重内共振及其导致的全桥大幅振动,发现当外激励频率约为长斜拉索固有频率2倍时,能激发其大幅“拍振”,且两个“拍频”之和正好等于外激励频率。通过分段分析和无相移滤波研究了各模态的相互耦合过程。研究表明:斜拉桥非线性模态频率低于线性模态频率;多重内共振需经历一定时间的耦合作用方能引发斜拉桥大幅稳态振动;强迫振动、局部-混合模态耦合振动和组合内共振同时发生是单频外激励能激发斜拉索“拍振”,且“拍频”之和等于外激励频率的根本原因。

Abstract

Cablestayed bridges have complex internal resonance characteristics. In the past, multiple internal resonances were studied usually based on the multiple relationships of frequencyies, while the modal coupling process was neglected. In order to study the multiple internal resonances and the coupling process between different modes, a nonlinear dynamic model test of a cablestayed bridge was carried out. It is found that when the external excitation frequency is about twice of the natural frequency of the longcable, “beat vibration” of the cable could be induced, and the sum of the two “beat frequencies” is exactly equal to the external excitation frequency. The coupling process between different modes was studied by using the method of subsection analysis and zerophaseshift filtering. The results show that: the cablestayed bridge’s nonlinear modal frequency is lower than the linear modal frequency; multiple internal resonances need to experience a certain time of coupling to induce the steady large amplitude vibration of the cablestayed bridge; the simultaweous occurance of forced vibration, localhybrid coupling vibration and combined internal resonance is the fundamental reason for the cable’s “beat vibration” induced by a single frequency excitation with the excitation frequency equal to the sum of the two “beat frequencies”.

引用本文

导出引用
孙测世 1,赵珧冰 2,康厚军 3,赵跃宇 3. 斜拉桥的多重内共振及其耦合过程研究[J]. 振动与冲击, 2018, 37(10): 87-93
SUN Ceshi 1 ZHAO Yaobing 2 KANG Houjun 3 ZHAO Yueyu 3. Multiple internal resonances and coupling process of cablestayed bridge[J]. Journal of Vibration and Shock, 2018, 37(10): 87-93

参考文献

[1] Sun C S, Zhao Y B, Wang Z Q et al. Effect of longitudinal vibration of the girder on nonlinear responses of a cable in cable stayed bridge[J]. European Journal of Environmental and Civil Engineering, 2017, 21(1): 94-107
[2] 刘海涛,魏明海,肖仪清,等. 索-梁耦合结构非线性分析[J]. 振动与冲击,2015,34(14):147-152+182
Liu H T, Wei M H, Xiao Y Q, et al. Nonlinear response analysis of a cable-beam coupled system[J]. Journal of Vibration and Shock, 2015, 34(14): 147-152+182
[3] 孙测世,康厚军,赵珧冰等. 斜拉索非线性振动跳跃过程试验研究[J]. 固体力学学报,2015,36(5):429-435
Sun C S, Kang H J, Zhao Y B, et al. Experimental research on jumping course of inclined cable in nonlinear vibration[J]. Chinese Journal of Solid Mechanics, 2015, 36(5): 429-435
[4] Warminski J, Zulli D, Rega G, Latalski J. Revisited modelling and multimodal nonlinear oscillations of a sagged cable under support motion[J]. Meccanica, 2016, 51 (11): 2541-2575
[5] Savor Z, Radic J Hrelja G. Cable vibrations at Dubrovnik bridge[J]. Bridge Structures, 2006, 2(2): 97-106
[6] Ni Y Q, Wang X Y, Chen Z Q, et al. Field observations of rain-wind-induced cable vibration in cable-stayed Dongting Lake Bridge[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95(5): 303-328
[7] 郭铁丁,康厚军,王连华等. 工程索结构动力学-非线性建模与分析[J]. 力学与实践,2016, 38(2): 119-125
Guo T D, Kang H J, Wang L H, et al. Dynamics of engineering cable: nonlinear modelling and analysis[J]. Mechanics in Engineering, 2016, 38(2): 119-125
[8] 康厚军,郭铁丁,赵跃宇. 大跨度斜拉桥非线性振动模型与理论研究进展[J]. 力学学报,2016, 48(3): 519-535
Kang H J, Guo T D, Zhao Y Y. Review on nonlinear vibration and modeling of large span cable-stayed bridge[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 519-535
[9] El Ouni M H, Ben Kahla N. Nonlinear dynamic analysis of a cable under first and second order parametric excitations[J]. Journal of Civil Engineering and Management, 2012, 18(4): 557-567
[10] Macdonald J H G. Multi-modal vibration amplitudes of taut inclined cables due to direct and/or parametric excitation[J]. Journal of Sound and Vibration, 2016, 363: 473-494
[11] Xia Y, Fujino Y. Auto-parametric vibration of a cable-stayed-beam structure under random excitation[J]. Journal of Engineering Mechanics (ASCE) 2006, 132(3): 279-86
[12] Gattulli V, Lepidi M, Macdonald J H G, et al. One-to-two global-local interaction in a cable-stayed beam observed through analytical, finite element and experimental models[J]. International Journal of Non-Linear Mechanics, 2005, 40(4): 571-588
[13] Gattulli V, Lepidi M. Localization and veering in the dynamics of cable-stayed bridges[J]. Computers and Structures, 2007, 85(21-22): 1661-1678
[14] 陈水生,孙炳楠. 斜拉桥索-桥耦合非线性参数振动数值研究. 土木工程学报,2006,36(04):70-75
Chen S S, Sun B N. Numerical study on nonlinear parametric vibration of coupled cables and bridge decks[J]. China Civil Engineering Journal, 2006, 36(04): 70-75
[15] 赵跃宇,蒋丽忠,王连华, 等. 索-梁结构的动力学建模理论及其内共振分析. 土木工程学报,2004,37(3):69-72
Zhao Y Y, Jiang L Z, Wang L H. The dynamical modelling theory and internal resonance of cable- beam composite structure[J]. China Civil Engineering Journal, 2004, 37(3): 69-72
[16] 王涛,沈锐利. 基于动力非线性有限元法的索-梁相关振动研究[J]. 振动与冲击,2015,34(5):159-167
Wang T, Shen R L. Cable-beam vibration study with nonlinear dynamic FEM[J]. Journal of Vibration and Shock, 2015, 34(5): 159-167
[17] Fung R F, Lu L Y, Huang S C. Dynamic modelling and vibration analysis of a flexible cable-stayed beam structure[J]. Journal of Sound and Vibration, 2002, 254(4): 717-726
[18] Wei M H, Lin K, Jin L, et al. Nonlinear dynamics of a cable-stayed beam driven by sub-harmonic and principal parametric resonance[J]. International Journal of Mechanical Sciences, 2016, 110: 78-93
[19] Kang H J, Guo T D, Zhao Y Y, et al. Dynamic modeling and in-plane 1:1:1 internal resonance analysis of cable-stayed bridge[J]. European Journal of Mechanics - A/Solids, 2017, 62: 94-109
[20] Song M T, Cao D Q, Zhu W D. Vortex-induced vibration of a cable-stayed bridge[J]. Shock and Vibration, 2016, 2016: 1-14
[21] Song M T, Cao D Q, Zhu W D, et al. Dynamic response of a cable-stayed bridge subjected to a moving vehicle load[J]. Acta Mechanica. 2016, 227(10): 2925-45
[22] Konstantakopoulos T G, Michaltsos G T. A mathematical model for a combined cable system of bridges[J]. Engineering Structures, 2010, 32(9): 2717-2728
[23] Ren W X, Peng X L, Lin Y Q. Experimental and analytical studies on dynamic characteristics of a large span cable-stayed bridge[J]. Engineering Structures, 2005, 27(4): 535-548
[24] El Ouni M H, Ben Kahla N, Preumont A. Numerical and experimental dynamic analysis and control of a cable stayed bridge under parametric excitation[J]. Engineering Structures, 2012, 45: 244-56
[25] Caetano E, Cunha A, Taylor C A. Investigation of dynamic cable-deck interaction in a physical model of a cable-stayed bridge. Part I: Modal analysis[J]. International Journal on Earthquake Engineering and Structural Dynamics, 2000, 29: 481-498
[26] Caetano E, Cunha A, Taylor C A. Investigation of dynamic cable-deck interaction in a physical model of a cable-stayed bridge. Part II: seismic response[J]. International Journal on Earthquake Engineering and Structural Dynamics, 2000, 29: 499-521
[27] Caetano E, Cunha A, Gattulli V, et al. Cable–deck dynamic interactions at the International Guadiana Bridge: On-site measurements and finite element modelling[J]. Structural Control and Health Monitoring, 2008, 15(3): 237-64
[28] Wu Q X, Kitahara Y C, Takahashi K, et al. Dynamic characteristics of Megami cable-stayed bridge - A comparison of experimental and analytical results[J]. Steel Structure, 2008, 8(1): 1-9
[29] 孙测世. 大跨度斜拉桥非线性振动试验研究. 博士学位论文. 长沙: 湖南大学, 2015
Sun C S. Experimental study of nonlinear vibration of long-span cable-stayed bridge. PhD Thesis. Changsha:Hunan University, 2015
[30] Nayfeh A H, Mook D T. Nonlinear oscillations. Wiley-Interscience, New York, 1995

PDF(1505 KB)

600

Accesses

0

Citation

Detail

段落导航
相关文章

/