复合载荷作用下火箭输送管动力特性试验与数值研究

韩文龙,张明明,卫国,胡彦平,王帅

振动与冲击 ›› 2018, Vol. 37 ›› Issue (11) : 1-4.

PDF(1145 KB)
PDF(1145 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (11) : 1-4.
论文

复合载荷作用下火箭输送管动力特性试验与数值研究

  • 韩文龙,张明明,卫国,胡彦平,王帅
作者信息 +

Tests and numerical simulation for dynamic characteristics of rocket transmission pipes under combined environmental loads

  • HAN Wenlong, ZHANG Mingming, WEI Guo, HU Yanping, WANG Shuai
Author information +
文章历史 +

摘要

新型运载火箭多采用低温推进剂,增压输送系统作为火箭动力源头,其稳定性至关重要,因此新型增压输送管路的动力特性研究尤为关键。本文根据输送管路在箭上的实际安装状态,设计了大尺寸输送管路综合应力试验系统,此系统除传统的振动、控制系统之外,还包括低温液体加载系统、压力加载平衡系统、管路极限位移补偿系统、管路变形失稳防护系统。借助以上试验系统本文分析了管路结构在常温常压、充压、液氮充压状态下的管路结构的固有特性。依据试验分析结果建立并修正了管路有限元模型,结合试验对管路在箭上所经受的复合环境应力进行了仿真和试验研究,并对管路各部位动响应结果进行了分析。对不同类型的空间管路设计有着很强的指导意义。

Abstract

According to the actual installation state of a pipeline of a rocket, a rocket transmission pipe test system under combined environment loads was designed and constructed. This system contained a vibration control system, a low temperature liquid loading one, a pressure loading balance one, a pipeline limited displacement compensating one and a pipeline deformation   instability protection one. Using the test system, natural frequencies of a pipeline structure under conditions of normal temperature and normal pressure, charging and liquid nitrogen charging were analyzed, respectively. Based on the test results, the finite element model of the pipeline was established and modified. Numerical simulation and tests for dynamic responses of the pipeline under comprehensive environment stresses of a rocket were conducted. The results were analyzed. They provided a strong guide for the design of different types of space pipelines.

关键词

输送管路 / 复合载荷试验系统 / 有限元模型 / 结构动力特性

Key words

rocket transmission pipe / composite stress test system / finite element model;

引用本文

导出引用
韩文龙,张明明,卫国,胡彦平,王帅. 复合载荷作用下火箭输送管动力特性试验与数值研究[J]. 振动与冲击, 2018, 37(11): 1-4
HAN Wenlong, ZHANG Mingming, WEI Guo, HU Yanping, WANG Shuai. Tests and numerical simulation for dynamic characteristics of rocket transmission pipes under combined environmental loads[J]. Journal of Vibration and Shock, 2018, 37(11): 1-4

参考文献

[1]. 王其政.结构耦合动力学[M] .北京:宇航出版社, 1997
[2]. 王心清.液体弹道导弹与运载火箭系列[M],宇航出版社,1994年12月;
[3]. Department of Defense. Environment engineering consideration and laboratory tests: MIL-STD-810G[S].[S. l. ]: Aeronautical Systems Center,2008: 20-34,256-335.
[4]. 邱明星,陈志英等.充液管路固有频率试验与计算分析[J].推进技术,2013年,11:37-42;
QIU Ming-xing,CHEN Zhi-ying. Experiment and Numerical Analysis of Natural Frequency for Liquid-Filled Pipe[J]. Journal of propulsion technology,2013,11:37-42;
[5]. 卢丽金,黄超广,沈祖辉. 飞机液压/燃油管路系统振动故障模式、机理及排除方法[J].
振动工程学报,2008,21(9):78-81.
LU Lijin,HUANG Chaoguang,SHEN Zuhui. Aircraft hydraulic/fuel piping system failure modes of vibration mechanism and trouble shooting[J]. Journal of Vibration Engineering,2008,21(9):78-81.
[6]. 张立翔,黄文虎,TIJSSELING A S. 管路流固耦合振动研究进展[J]. 水动力学研究与进展,2000,15(3):366-379.
ZHANG Lixiang,HUANG Wenhu,TIJSSELING A S. Progress of conveying fluid pipe in fluid-structure interaction [J]. Journal of Hydrodynamics,2000,15(3):366-379.
[7]. MIRRAMEZANI M,MIRDAMADI H R,GHAYOURM. Innovative coupled fluid–structure interaction model for carbon nano-tubes conveying fluid by considering the size effects of nano-flow and nano-structure[J].Computational Materials Science, 2013(77):161-171.
[8]. KARAGIOZIS K N,PAÏDOUSSIS M P,AMABILI M. Effect of geometry on the stability of cylindrical clamped shells subjected to internal fluid flow[J]. Computers and
Structures,2007(85):645-659.
[9]. 李林凌, 黄其柏, 连小珉, 郑四发. 排气管气固耦合系统振动特性[J].汽车工程, 2006, 28( 12) : 1078- 1085.
L i Linling, HuangQibai, L ian Xiaom in, Zheng Sifa. Vibration Character is tics of Gas Structure Coupling System of Exhaust Pipeline [J]. Automotive Engineering, 2006, 28(12) : 1078- 1085.
[10]. 郭长虹,丁旭,曹源,权凌霄.页岩气井下开采管路气固耦合振动特性分析[J].液压与气动, 2016, 07( 010) : 50- 55.
GUO Chang-hong, DING Xu, CAO Yuan, QUAN Ling-xiao. Gas-solid Coupling Vibration Characteristics Analysis of Underground Mining Shale Gas Pipeline [J]. Chinese Hydraulics & Pneumatics, 2016, 07(010) : 50- 55.
 [11]. 赵杰,李峰,刘录. 超高压管线系统气固耦合振动特性的仿真研究[J].北京石油化工学院学报, 2013,( 2) : 26 -29.
ZHAO Jie,LI Feng,LIU Lu. Simulation of Ultra-high Pressure Pipeline System Vibration Characteristics of Gas solid Coupling [J]Journal of Beijing Institute of Petro-Chemical Technology,2013,( 2) : 26 -29.
 [12]. 程谋森, 刘昆, 张育林. 低温推进剂供应管路预冷充填瞬变流计算[J].推进技术, 2000, 21( 5) : 38- 41.
CHENG Mou􀀂sen, LIU Kun, ZHANG Yu􀀂lin. Numerical analysis of precooling and priming transients in cryogenic propellant feed systems [J]. Journal of propulsion technology, 2000, 21(5) : 38- 41.
 [13]. 任德鹏,丁鹏飞,夏新林.低温液体充填管路的数值计算[J].工程热物理学报, 2004, 25(1) : 118- 120.
REN De peng, DING Peng fei, XIA Xin lin. Numerical simulation of filing process of cryogenic liquid in a pipeline. [J]. Journal of engineering thermos-physics, 2004, 25(1): 118- 120.
[14]. Lankford D W, Simmons M A, Heikkinen B D. A detailed numerical simulation of a liquid propellant rocket engine ground test experiment[R]. AIAA 92-3604.
[15]. Schley C A, et al. Comparison of high pressure H2/O2 rocket model engine reference simulation[R]. AIAA 95-2429.

PDF(1145 KB)

Accesses

Citation

Detail

段落导航
相关文章

/