弹性圆环在刚壁上的撞击回弹

李凤云1,吴志鹏1,郑宇轩1,周风华1,余同希1,2

振动与冲击 ›› 2018, Vol. 37 ›› Issue (11) : 12-17.

PDF(891 KB)
PDF(891 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (11) : 12-17.
论文

弹性圆环在刚壁上的撞击回弹

  • 李凤云1,吴志鹏1,郑宇轩1,周风华1,余同希1,2
作者信息 +

 An elastic ring impacting against a rigid wall and rebounding

  •   LI Fengyun 1  WU Zhipeng 1  ZHENG Yuxuan 1  ZHOU Fenghua 1  YU Tongxi1,2
Author information +
文章历史 +

摘要

薄壁圆环作为一种典型结构单元,即使在完全弹性情况下,其撞击刚壁后的恢复系数(COR)也显著小于1。针对不同工况下完全弹性圆环正撞击刚壁的过程进行数值分析,结果显示其恢复系数主要集中在0.76~0.8之间,个别工况下甚至更小。将完全弹性薄壁圆环等效成曲梁并进行微元分析,结合平衡方程和几何方程求解得到圆环在不同振动模态下的振型、频率等振动信息。结合数值模拟结果,分析指出在一定的材料参数和碰撞速度范围内,完全弹性薄壁圆环在撞击刚壁回弹过程中以一阶平动和二阶自由振动模态为主,恢复系数近似为一定值。

Abstract

As a kind of typical structural unit, after impacting against a rigid-wall, a thin-walled ring’s coefficient of restitution (COR) is significantly less than 1 under the condition of its full elasticity. The processes of the elastic ring impacting against the rigid-wall under different working conditions were analyzed numerically. The results showed that the ring’s COR is mainly concentrated within 0.76 ~ 0.8, this COR is more smaller under a certain working conditions. Then elastic ring was equivalent to a curved beam. A micro-element analysis was done for the curved beam. Combined with equilibrium equations and geometric equations, the ring’s vibration modal shapes and modal frequencies were solved. Combining with the numerical simulation results, is was shown that within a certain range of material parameters and impacting velocity, the full elastic ring mainly presents its 1st order translation mode and 2nd order free vibration mode in the process of its impacting against a rigid-wall, its COR keeps approximately a constant value. 

关键词

弹性圆环 / 恢复系数 / 振动 / 模态分析

Key words

elastic ring / coefficient of restitution / vibration / modal analysis

引用本文

导出引用
李凤云1,吴志鹏1,郑宇轩1,周风华1,余同希1,2. 弹性圆环在刚壁上的撞击回弹[J]. 振动与冲击, 2018, 37(11): 12-17
LI Fengyun 1 WU Zhipeng 1 ZHENG Yuxuan 1 ZHOU Fenghua 1 YU Tongxi1,2.  An elastic ring impacting against a rigid wall and rebounding[J]. Journal of Vibration and Shock, 2018, 37(11): 12-17

参考文献

[1] Zhou Fenghua, Yu TX, Yang Liming. Elastic behavior of ring-on-foundation[J]. International Journal of Mechanical Sciences, 2012, 54(1):38-47.
[2 ] Bao R H, Yu T X. Impact and rebound of an elastic–plastic ring on a rigid target[J]. International Journal of Mechanical Sciences, 2014, 91:55-63.
[3] Xu S, Dong R, Lu G, et al. Collision and rebounding of circular rings on rigid target[J]. International Journal of Impact Engineering, 2015, 79(3):14-21.
[4] 张铁光, 郭晓刚. 受横向冲击圆环的粘塑性大变形分析[J]. 爆炸与冲击, 1990(1):57-64.
Zhang Tieguang, Guo Xiaogang. The large viscoplastic deformation of a ring subjected to lateral impulsive loading[J]. Explosion and Shock Waves, 1990, (1):57-64.
[5] 余同希. 利用金属塑性变形原理的碰撞能量吸收装置[J]. 力学进展, 1986, 16(1):28-39
Yu Tongxi. Impact energy absorbing devices based upon the plastic deformation of metallic elements[J]. Advances in Mechanics, 1986, 16(1):28-39.
[6] 赵凯, 沈建虎, 刘凯欣,等. 圆环列系统吸能特性研究[J]. 北京大学学报自然科学版, 2007, 43(3):312-316.
Zhao Kai, Shen Jianhu, Liu Kaixin,et al. Research on energy absorption feature of ring systems[J].Acta Scientiarum Naturalium Universitatis Pekinensis, 2007, 43(3): 312-316.
[7 ] Alghamdi A A A. Collapsible impact energy absorbers: an overview[J]. Thin-Walled Structures, 2001, 39(2):189-213.
[8] 余同希,邱信明. 冲击动力学[M]. 北京:清华大学出版社, 2011
Yu Tongxi, Qiu Xinming. Impact Dynamics[M]. Beijing: Tsinghua University Press, 2011.
[9] Deruntz J A, Hodge P G. Crushing of a Tube Between Rigid Plates[J]. Journal of Applied Mechanics, 1962, 30(3):391-395.
[10] Yu TX. Large plastic deformation of a circular ring pulled diametrically[J]. Acta Mechanica Sinica, 1979, 11: 88–91.
[11] Reid S R, Reddy T Y. Effect of strain hardening on the lateral compression of tubes between rigid plates[J]. International Journal of Solids and Structures, 1978, 14(3): 213-225.
[12] Reddy T Y, Reid S R. Lateral compression of tubes and tube-systems with side constraints[J]. International Journal of Mechanical Sciences, 1979, 21(3):187-199.
[13] 赵跃宇, 康厚军, 冯锐,等. 曲线梁研究进展[J]. 力学进展, 2006, 36(2):170-186.
Zhao Yueyu, Kang Houjun, Feng Rui, et al. Advances of research on curved beams[J]. Advances in mechanics, 2006, 36(2):170-186.
[14] 童根树. 薄壁曲梁线性和非线性分析理论[M]. 北京:科学出版社, 2004.
 Tong Genshu. The theory of thin-walled linear and nonlinear analysis of curved beams[M]. Beijing: Science Press. 2004.
[15] Singiresu S. Rao. Vibration of Circular Rings and Curved Beams[M]. New Jersey: John Wiley & Sons, Inc. 2007: 393-419.
[16] ABAQUS 6.12 user reference manual,2011.

PDF(891 KB)

535

Accesses

0

Citation

Detail

段落导航
相关文章

/