基于HVD降噪和多频段频谱叠加的圆柱滚子轴承故障诊断

邓四二1,2,4,张言伟1,王恒迪1,张继涛3,张文虎4

振动与冲击 ›› 2018, Vol. 37 ›› Issue (11) : 136-144.

PDF(1578 KB)
PDF(1578 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (11) : 136-144.
论文

基于HVD降噪和多频段频谱叠加的圆柱滚子轴承故障诊断

  • 邓四二1,2,4,张言伟1,王恒迪1,张继涛3,张文虎4
作者信息 +

Roller bearings’ fault diagnosis based on HVD denoising and multi-band spectra superposition

  •  DENG Sier 1,2,4 ,ZHANG Yanwei1 ,WANG Hengdi1 ,ZHANG Jitao3, ZHANG Wenhu4
Author information +
文章历史 +

摘要

针对圆柱滚子轴承早期故障难以检测的问题,本文提出了一种基于HVD(hilbert vibration decomposition)分解降噪、多频段局部最优频带叠加的滚动轴承故障诊断方法。该方法首先对振动信号HVD分解提取含丰富故障信息的分量,然后对不同频域范围频谱的分析提取多个局部最优频段,并计算局部最优频段经过包络解调后的频谱,最后将子带频谱叠加凸出其中微弱故障信息。将该方法应用于圆柱滚子轴承故障检测中,并与快速峭度图分析结果进行了对比,验证了本文所提方法的有效性。

Abstract

To effectively extract early fault features of roller bearings, a method for fault diagnosis of roller beatings based on HVD (Hilbert vibration decomposition) denoising and multi-band local optimal spectra superposition was proposed. Firstly, the components containing rich fault information were extracted from roller bearings’vibration signals after HVD. Secondly, their multi-band spectra were analyzed to extract multiple local optimal frequency bands. The spectra of local optimal frequency bands after envelope demodulation were calculated. Finally, these spectra were superimposed to protrude the weak fault information contained. The proposed method was applied in fault diagnosis of roller bearings, the results were compared with those using the fast kurtosis analysis, its effectiveness was verified.
 

 

关键词

圆柱滚子轴承 / 故障诊断 / HVD降噪 / 频谱叠加

Key words

Key words: roller bearing / fault diagnosis / HVD denoising / spectra superposition

引用本文

导出引用
邓四二1,2,4,张言伟1,王恒迪1,张继涛3,张文虎4. 基于HVD降噪和多频段频谱叠加的圆柱滚子轴承故障诊断[J]. 振动与冲击, 2018, 37(11): 136-144
DENG Sier 1,2,4,ZHANG Yanwei1,WANG Hengdi1,ZHANG Jitao3, ZHANG Wenhu4. Roller bearings’ fault diagnosis based on HVD denoising and multi-band spectra superposition[J]. Journal of Vibration and Shock, 2018, 37(11): 136-144

参考文献

[1]王国彪,何正嘉,陈雪峰,等.机械故障诊断基础研究“何去何从”[J].机械工程学报,2013,49(1):63-72.
WANG Guo-biao,HE Zheng-jia,CHEN Xue-feng,et al. Basicresearch on machinery fault diagnosis-what is the prescription[J].Journal of Mechanical Engineering, 2013,49(1):63-72.
[2]程军圣, 于德介, 杨宇,等. 尺度-小波能量谱在滚动轴承故障诊断中的应用[J]. 振动工程学报, 2004, 17(1):82-85.
Cheng J, Yu D, Yang Y, et al. Application of scale-wavelet power spectrum to fault diagnosis of rolling bearings[J]. Journal of Vibration Engineering, 2004.
[3] 项巍巍, 蔡改改, 樊薇,等. 基于双调Q小波变换的瞬态成分提取及轴承故障诊断应用研究[J]. 振动与冲击, 2015, 34(10):34-39.
Xiang W W, Cai G G, Fan W, et al. Transient feature extraction based on double-TQWT and its application in bearing fault diagnosis[J]. Zhendong Yu Chongji/journal of Vibration & Shock, 2015, 34(10):34-39.
[4]赵学智, 叶邦彦, 陈统坚. 基于小波—奇异值分解差分谱的弱故障特征提取方法[J]. 机械工程学报, 2012, 48(7):37-48.
ZHAO, Xuezhi ,YE Bangyan, CHEN Tongjian. Extraction Method of Faint Fault Feature Based on Wavelet-SVD Difference Spectrum[J].Journal of Mechanical Engineering, 2012,48(7):37-48.
[5]Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences, 1998, 454(1971):903-995.
[6]胡爱军,马万里,唐贵基. 基于集成经验模态分解和峭度准则的滚动轴承故障特征提取方法[J].中国电机工程学报,2012, 32(11): 106-111.
HU Aijun , MA Wanli, TANG Guiji.Rolling Bearing Fault Feature Extraction Method Based on Ensemble Empirical Mode Decomposition and Kurtosis Criterion[J]. Zhongguo Dianji Gongcheng Xuebao/proceedings of the Chinese Society of Electrical Engineering, 2012, 32(11):106-111.
[7]蔡艳平,李艾华,石林锁,等.基于EMD与谱峭度的滚动轴承故障检测改进包络谱分析[J]. 振动与冲击,2011,30(2): 167-172.
CAl Yan-ping, LI Ai-hua, SHI Lin-SUO, et al. Roller bearing fault detection using improved envelope spectrum analysis based on EMD and spectrum kurtosis[J]. Journal of Vibration & Shock, 2011, 30(2):168-172.
[8] 王宏超,陈进,董广明,等. 基于快速kurtogram算法的共振解调方法在滚动轴承故障特征提取中的应用[J]. 振动与冲击,2013, 32(1): 35-37.
WANG Hongchao, CHEN Jin, DONG Guangming,et al. Application of resonance demodulation in rolling bearing fault feature extraction based on fast computation of kurtogram[J]. Journal of vibration and shock, 2013, 32(1): 35-37.
[9]Guo W, Tse P W. A novel signal compression method based on optimal ensemble empirical mode decomposition for bearing vibration signals[J]. Journal of Sound & Vibration, 2013, 332(2):423-441.
[10]周 智,朱永生,张优云,等.基于 EEMD 和共振解调的滚动轴承自适应故障诊断[J]. 振动与冲击,2013,32(2): 76-80.
Zhi Z, Zhu Y S, Zhang Y Y, et al. Adaptive fault diagnosis of rolling bearings based on EEMD and demodulated resonance[J]. Journal of Vibration & Shock, 2013, 32(2):76-80.
[11] 代士超,郭 瑜,伍 星,等.基于子频带谱峭度平均的快速谱峭度图算法改进[J]. 振动与冲击,2015, 34(7): 98-102.
DAI Shi-chao,GUO Yu,WU Xing,et al. Improvement on fast kurtogram algorithm based on sub-frequency-band spectral kurtosis average[J]. Zhendong Yu Chongji/journal of Vibration & Shock, 2015, 34(7):98-102 and 108.
[12] Yaguo Lei, Jing Lin, Zhengjia He, et al. Application of an improved kurtogram method for fault diagnosis of rolling element bearings[J]. Mechanical Systems & Signal Processing, 2011, 25(5):1738-1749.
 [13] Al-Ghamd A M, Mba D. A comparative experimental study on the use of acoustic emission and vibration analysis for bearing defect identification and estimation of defect size[J]. Mechanical Systems & Signal Processing, 2006, 20(7):1537-1571.
[14]Feldman M. Time-varying vibration decomposition and analysis based on the Hilbert transform[J]. Journal of Sound & Vibration, 2006, 295(3-5):518-530.
[15] 刘慧, 刘国海, 沈跃. 采用希尔伯特振动分解的非整数次谐波检测新方法[J]. 高电压技术, 2009, 35(7):1758-1764.
Liu H, Liu G, Shen Y. Novel method for detection of voltage flicker based on Hilbert vibration decomposition[J]. Chinese Journal of Scientific Instrument, 2009, 30(9):2001-2006.
[16]朱可恒,宋希庚,薛冬新. 希尔伯特振动分解在滚动轴承故障诊断中应用[J]. 振动与冲击,2014,33(14): 160-164
ZHU Keheng, SONG Xigeng, XUE Dongxin. Rolling bearing fault diagnosis using Hilbert vibration decomposition[J]. Journal of vibration and shock, 2014,33(14): 160-164
[17]唐贵基,庞 彬. 基于改进的希尔伯特振动分解的机械故障诊断方法研究[J]. 振动与冲击,2015,34(3): 167-171.
TANG Guiji, PANG Bin. A mechanical fault diagnosis method based on improved Hilbert vibration decomposition[J]. Journal of vibration and shock, 2015,34(3): 167-171.
[18] 邓四二, 王勇, 王恒迪. 基于IHT的共振解调技术的滚动轴承故障诊断方法[J]. 航空动力学报, 2012, 27(1):69-74.
DENG Si-er,WANG Yong,WANG Heng-di.Resonance demodulat -ion technique based on IHT for rolling bearings fault diagnisis[J]. Journal of Aerospace Power, 2012, 27(1):69-74.
[19]姚廷强, 黄亚宇, 王立华. 圆柱滚子轴承多体接触动力学研究[J]. 振动与冲击, 2015(7):15-23.
Yao T Q, Huang Y Y, Wang L H. Multibody contact dynamics for cylindrical roller bearing[J]. Journal of Vibration & Shock, 2015, 34(7):15-23 and 32.
[20]韦尧兵, 闫淑萍, 王风涛. 轴承滚道局部故障与其振动特性的影响研究[J]. 机械设计与制造, 2016(2):76-80.
WEI Xiaobing,YAN Shuping,WANG Fengtao.The Study for Effects of Localized Defects on Raceways on Vibration Characters of Rolling Element Bearings[J]. Machinery Design & Manufacture, 2016(2):76-80.
[21]陈於学. 基于接触力学的圆柱滚子轴承振动研究[D]. 武汉:华中科技大学, 2005.
CHEN Yuxue. Research on Vibrations of Cyclindrical Roller Bearings Based on Contact Mechanics[D].wuhan: Huazhong University of Science and Technology,2005.
[22] 刘静, 邵毅敏, 秦晓猛,等. 基于非理想Hertz线接触特性的圆柱滚子轴承局部故障动力学建模[J]. 机械工程学报, 2014, 50(1):91-97.
Liu J, Shao Y, Qin X, et al. Dynamic Modeling on Localized Defect of Cylindrical Roller Bearing Based on Non-Hertz Line Contact Characteristics[J]. Journal of Mechanical Engineering, 2014, 50(1):91.
[23]马川.滚动轴承故障特征提取与应用研究[D].大连:大连理工大学,2009.
MA Chuan. Investigation on Fault Features Extraction for Rolling Beating and Application[D].Dalian:Dalian University of Technology,2009.

PDF(1578 KB)

441

Accesses

0

Citation

Detail

段落导航
相关文章

/