基于指数应变能密度的弦支穹顶结构失效准则研究

张明1, 田始轩2, 刘占辉1, 周广春3,4, 陈志伟1

振动与冲击 ›› 2018, Vol. 37 ›› Issue (11) : 145-152.

PDF(1224 KB)
PDF(1224 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (11) : 145-152.
论文

基于指数应变能密度的弦支穹顶结构失效准则研究

  • 张明1, 田始轩2, 刘占辉1, 周广春3,4, 陈志伟1
作者信息 +

Failure criterion for suspen-domes based on exponential strain energy density

  • ZHANG Ming1, TIAN Shixuan2, LIU Zhanhui1, ZHOU Guangchun3,4, CHEN Zhiwei1
Author information +
文章历史 +

摘要

针对弦支穹顶结构缺少失效判断准则问题,本文基于结构整体指数应变能密度对弦支穹顶结构在地震作用下的受力状态进行了分析,提出了弦支穹顶结构的失效判定准则。首先,给出了弦支穹顶结构的指数应变能密度和值(Id)的计算公式,并定性地推导了Id随加速度幅值(A)增加能够发生突变的机理,从而奠定了判断结构失效的理论基础。然后,应用ANSYS有限元通用程序对9个不同构造的弦支穹顶结构分别在三向简谐波和TAFT地震波作用下的特征响应进行了全荷载域动力时程分析,并实时提取出各级动荷载幅值下结构全部单元的应变能密度。进而,构建了弦支穹顶结构的Id-A关系模型,并通过分析结构的不同受力状态证实了Id-A曲线上拐点的存在。据此拐点,本文提出了基于指数应变能密度的弦支穹顶结构的失效荷载判定准则。最后,基于分析所选弦支穹结构动力失效时刻的最大节点位移等动力响应特征,证明了所提出的失效准则的合理性。本文所提出的弦支穹顶结构失效判断准则及其分析方法,将对完善空间网格结构的设计理论及工程实践具有重要的参考价值。

Abstract

Here, a criterion for judging failure of a suspen-dome under seismic loading was proposed based on structural exponential strain energy density whose purpose was to deeply understand aseismic performance, and reasonably judge failure mechanism of a structure. Firstly, the calculation formula for the sum of exponential strain energy density Id of a suspen-dome was derived. The structural failure mechanism was qualitatively analyzed to lay a theoretical foundation for judging failure of a suspen-dome. Then, using the finite element software ANSYS, dynamic response processes of 9 typical suspen-domes under actions of simple harmonic waves and TAFT seismic ones in three directions were calculated and strain energy densities of each structure’s all elements were extracted under dynamic load amplitudes with different levels. Furthermore, the relationship model between Id and the seismic acceleration amplitude A was built, the existence of inflection points on Id ~ A curve was confirmed through analyzing different force-bearing states of structures. According to these inflection points, a criterion for judging failure load of a suspen-dome based on the exponential strain energy density was proposed. Finally, the rationality of the proposed criterion was verified through analyzing the above mentioned structures’ the maximum nodal displacement features during their dynamic failure. The proposed criterion and its analysis method provided an important reference for improving design theories and engineering practices of spatial grid structures.

关键词

弦支穹顶结构 / 地震作用 / 指数应变能密度 / 判定准则 / 失效荷载

Key words

suspen-dome / seismic load / exponential strain energy density / criterion / failure load

引用本文

导出引用
张明1, 田始轩2, 刘占辉1, 周广春3,4, 陈志伟1. 基于指数应变能密度的弦支穹顶结构失效准则研究[J]. 振动与冲击, 2018, 37(11): 145-152
ZHANG Ming1, TIAN Shixuan2, LIU Zhanhui1, ZHOU Guangchun3,4, CHEN Zhiwei1. Failure criterion for suspen-domes based on exponential strain energy density[J]. Journal of Vibration and Shock, 2018, 37(11): 145-152

参考文献

[1] Kawaguchi M, Abe M, Hatato T, et al. Structural tests on the suspen-dome system[C]. The IASS-ASCE International Symposium 1994, Atlanta, GA, USA, 1994: 383-392.
[2] Kawaguchi M, Abe M, Tatemichi I. Design, tests and realization of suspen-dome system[J]. Journal of the International Association for Shell and Spatial Structures, 1999, 40(3): 179-192.
[3] 陈志华. 弦支穹顶结构体系及其结构特性分析[J]. 建筑结构, 2004, 34(5): 38-41 (Chen Zhihua. Suspendome structure system and characteristic analysis[J]. Building Structure, 2004, 34(5): 38-41. (in Chinese) )
[4] 陈志华, 郭云, 李阳. 弦支穹顶结构预应力及动力性能理论与实验研究[J]. 建筑结构, 2004, 34(5): 42-45 (Chen Zhihua, Guo Yun, Li Yang. Experimental research and analysis of the prestress and dynamic behavior for suspendome structure system[J]. Building Structure, 2004, 34(5): 42-45. (in Chinese))
[5] 陈志华, 李阳, 康文江. 联方型弦支穹顶研究[J]. 土木工程学报, 2005, 38(5): 34-40 (Chen Zhihua, Li Yang, Kang Wenjiang. Analysis of lamella suspendome systems[J]. China Civil Engineering Journal, 2005, 38(5): 34-40. (in Chinese))
[6] 钱曙珊. 大跨弦支穹顶结构的动力反应分析[J]. 天津大学学报, 2010, 43(1): 26-31 (Qian Shushan. Analysis of dynamic response for long span suspend-dome structure[J]. Journal of Tianjin University (Science and Technology), 2010, 43(1): 26-31. (in Chinese))
[7] 周臻, 孟少平, 吴京. 大跨弦支穹顶结构的振动模态与地震响应分析[J]. 振动、测试与诊断, 2013, 33(4): 609-613 (Zhou Zhen, Meng Shaoping, Wu Jing. Analysis of vibration modes and seismic response for long span suspend-dome structure[J]. Journal of Vibration, Measurement & Diagnosis, 2013, 33(4): 609-613. (in Chinese))
[8] 赵均, 徐金蓓, 甘明, 周忠发, 许洋, 曾明. 椭球面弦支穹顶结构的稳定性[J]. 北京工业大学学报, 2013, 39(12): 1821-1826 (Zhao Jun, Xu Jinbei, Gan Ming, Zhou Zhongfa, Xu Yang, Zeng Ming. Stability analysis of ellipsoid suspend-dome[J]. Journal of Beijing University of Technology, 2013, 39(12): 1821-1826. (in Chinese))
[9] HOUSNER G W. Behavior of structures during earthquake[J]. Journal of the Engineering Mechanics Division, 1959, 85(4): 109-129.
[10] AKIYAMA H. Earthquake resistant limit state design for buildings[M]. Tokyo: University of Tokyo Press, 1985.
[11] 马千里. 钢筋混凝土框架结构基于能量抗震设计方法研究[D]. 北京: 清华大学, 2009.(Ma Qianli. Study on energy-based seismic design methodology and application for RC frames[D]. Beijing: Tsinghua University, 2009. (in Chinese))
[12] FAJFAR P. Equivalent ductility factors taking into account low-cycle fatigue[J]. Earthquake Engineering & Structural Dynamics, 1992, 21(9): 837-848.
[13] 欧进萍, 何政, 吴斌, 等. 钢筋混凝土结构基于地震损伤性能的设计[J]. 地震工程与工程振动, 1999, 19(1): 21-30. (Ou Jinping, He Zheng, Wu Bin, et al. Seismic damage performance-based design of reinforced concrete structures[J]. Earthquake Engineering and Engineering Vibration, 1999, 19(1): 21-30. (in Chinese))
[14] RIDDELL R, GARCIA J E. Hysteretic energy spectrum and damage control[J]. Earthquake Engineering & Structural Dynamics, 2001, 30(12): 1791-1816.
[15] 陈永祁, 龚思礼. 结构在地震动时延性和累积塑性耗能的双重破坏准则[J]. 建筑结构学报, 1986, 7(1): 35-48. (Chen Yongqi, Gong Sili. Double control damage index of structural ductility and dissipated energy during earthquake[J]. Journal of Building Structures, 1986, 7(1): 35-48. (in Chinese))
[16] 陈逵,刘哲锋,沈蒲生. 结构瞬时输入能量反应持时谱的研究[J]. 工程力学, 2011(1): 19-25 (Chen Kui, Liu Zhefeng, Shen Pusheng. Study of the duration spectra of structural momentary input energy response[J]. Engineering Mechanics, 2011(1): 19-25. (in Chinese))
[17] YE L P, OTANI S. Maximum seismic displacement of inelastic systems based on energy concept[J]. Earthquake Engineering & Structural Dynamics, 1999, 28(12): 1483-1499.
[18] 周云, 乐登, 邓雪松. 设计用地震动总输入能量谱研究[J]. 工程抗震与加固改造, 2008, 30(5): 1-7 (Zhou Yun, Yue Deng, Deng Xuesong. Research on input energy spectra for design of earthquake strong motion[J]. Earthquake Resistant Engineering and Retrofitting, 2008, 30(5): 1-7. (in Chinese))
[19] 王德才, 叶献国, 常磊. 考虑场地条件与设计地震分组的输入能量谱研究[J]. 地震学报, 2011, 33(1): 91-102 (Wang Decai, Ye Xianguo, Chang Lei. A study on input energy spectrum in consideration of site effect and design earthquake classification[J]. Acta Seismologica Sinica, 2011, 33(1): 91-102. (in Chinese))
[20] 何艳丽, 董石麟, 龚景海. 空间网格结构频域风振响应分析模态补偿法[J].工程力学, 2002, 19(4): 1-6 (He Yanli, Dong Shilin, Gong Jinghai. Wind-induced response of spatial structures with mode compensation in frequency domain[J]. Engineering Mechanics, 2002, 19(4): 1-6. (in Chinese))
[21] 杜文风, 高博青, 董石麟. 弦支穹顶结构动力强度破坏的双控准则[J].浙江大学学报(工学版), 2007, 41(11): 1916-1920  (Du Wenfeng, Gao Boqing, Dong Shi-lin. Double-control criterion of dynamical strength failure for single layer latticed shells[J]. Journal of Zhejiang University (Engineering Science), 2007, 41(11): 1916-1920. (in Chinese))
[22] 刘英亮, 邢佶慧. 基于能量的单层球面网壳强震响应规律研究[J]. 建筑结构学报(增刊 2), 2010, (S2): 30-33 (Lu Yingliang, Xing Jihui. Energy-based research on response of single-layer reticulated domes subjected to severe earthquakes [J]. Journal of Building Structures (Supplementary Issue 2), 2010, (S2): 30-33.(in Chinese))
[23]  张明, 张瑀, 周广春, 支旭东. 基于应变能密度的单层球面网壳结构失效判定准则[J]. 土木工程学报, 2014, 47(4): 56-63 (Zhang, M., Zhang, Y., Zhou, G. C., Zhi, X. D. (2014). “Criterion for judging failure of single-layer latticed dome based on strain energy density.” China Civil Engineering Journal, 47(4), pp. 56-63.)
[24] Bathe K J. Finite element procedures[M]. New Jersey: Prentice-Hall, Englewood Cliffs, 1996.
[25] Andruet R H. Special 2-D and 3-D geometrically nonlinear finite elements for analysis of adhesively bonded joints[D]. Virginia: Virginia Polytechnic Institute and State University, 1998.
[26] JGJ 7-2010 空间网格结构技术规程[S]. 北京: 中国建筑工业出版社, 2010 (JGJ 7-2010 Technical specification for space frame structures[S]. Beijing, China Architecture & Building Press, 2010).
[27] GB 50017-2003 钢结构设计规范[S]. 北京: 中国计划出版社, 2003 (GB 50017-2003 Code for design of steel structures[S]. Beijing: China Planning Publishing House)

PDF(1224 KB)

Accesses

Citation

Detail

段落导航
相关文章

/