海上浮式集装箱起重机的小车位置跟踪和吊重消摆控制研究

孙友刚1,2,董达善1,强海燕1,2,滕媛媛1

振动与冲击 ›› 2018, Vol. 37 ›› Issue (11) : 207-215.

PDF(1852 KB)
PDF(1852 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (11) : 207-215.
论文

海上浮式集装箱起重机的小车位置跟踪和吊重消摆控制研究

  • 孙友刚1,2,董达善1,强海燕1,2,滕媛媛1
作者信息 +

Crab position tracking and lifting weight anti-sway control for an off-shore container crane on sea

  •   SUN You-gang 1 2   DONG Da-shan1  QIANG Hai-yan 1 2  TENG Yuan-yuan1
Author information +
文章历史 +

摘要

浮式集装箱起重机(OCC)是新型的海上吊运系统,能够对锚泊在深海的大型集装箱运输船进行装卸作业,来解决港口拥堵和大型船舶因港口水浅无法靠岸过驳等问题。但是由于受海上风浪干扰影响,所吊运的载荷会产生复杂的非线性动力学响应,严重影响作业效率,甚至引发安全事故。针对此问题,本文推导船体横摇和升沉运动下OCC系统负载吊运过程的摆振动力学模型,并设计吊运轨迹跟踪的非线性控制器,来同时实现海浪干扰和起重小车运动耦合下OCC系统的位置跟踪和负载的消摆控制。采用Lyapunov方法严格证明了控制器的稳定性。最后,比较仿真和实验结果验证所提方法的有效性。通过此方法能抑制海浪激励对集装箱吊运轨迹的影响,确保OCC系统安全高效运行。

Abstract

An offshore container crane (OCC) can perform loading and unloading containers for a large container-ship anchored in deep sea to solve problems of port congestion and large ships being unable to dock due to smaller water-depth of port. However, due to wave-induced movements of a ship, the crane’s control system needs to be redesigned to ensure the load transfer on sea. Here, the nonlinear dynamic equations of an OCC system subjected to ship motions were derived. Then a novel nonlinear controller was deigned to realize the crab position tracking and lifting weight anti-sway control simultaneously irrespective of ship motions and parameters perturbation. Lyapunov method was utilized to prove the stability of the proposed control law. Finally, comparing the simulation results and those of tests demonstrated the effectiveness of the proposed method. It was shown that the effects of sea wave excitation on the hoisting and swinging trajectory of containers can be suppressed with the proposed method to ensure the OCC system operation’s efficiency and safety.


关键词

船体运动 / 动力学 / 跟踪控制 / 残留摆角抑制 / 虚拟样机

Key words

ship motions / dynamics / tracking control / residual sway angle suppression / virtual prototype

引用本文

导出引用
孙友刚1,2,董达善1,强海燕1,2,滕媛媛1. 海上浮式集装箱起重机的小车位置跟踪和吊重消摆控制研究[J]. 振动与冲击, 2018, 37(11): 207-215
SUN You-gang 1 2 DONG Da-shan1 QIANG Hai-yan 1 2 TENG Yuan-yuan1 . Crab position tracking and lifting weight anti-sway control for an off-shore container crane on sea[J]. Journal of Vibration and Shock, 2018, 37(11): 207-215

参考文献

[1] 林天倚,卢春霞. 基于拥堵控制的轴辐式海运网络枢纽港选择模型[J]. 上海海事大学学报,2013, 34(4):59-66.
LIN Tian-yi, LU Chun-xia. Hub port selection model of hub-and-spoke shipping network considering congestion control [J]. Journal of Shanghai Maritime University, 2013, 34(4):59-66.
[2] 宋志鹏,江南莼. 船舶大型化趋势受制于港口[J]. 中国船检,2016, 2: 52-56.
SONG Zhi-peng, JIANG Nan-chun. Large-Scale Trend Is Subject To The Port Of The Ship [J]. China Ship Survey, 2016, 2: 52-56.
[3] Baird, A. J. and Rother, D. Technical and Economic Evaluation of the Floating Container Storage and Transhipment Terminal (Fcstt)[J]. Transportation Research Part C-Emerging Technologies,2013,30:178-192.
[4] Jonghoe, K. and James, R. M. Offshore Port Service Concepts: Classification and Economic Feasibility[J], Flexible Services and Manufacturing Journal,2012, 24:214-245.
[5] Jang, I. G., Kim, K. S. and Kwak, B. M. Conceptual and Basic Designs of the Mobile Harbor Crane Based on Topology and Shape Optimization[J],Structural and Multidisciplinary Optimization,2014,50,505-215.
[6] 董明晓,脱建智,任意翔,等. 最优输入整形抑制变参数桥式起重机载荷摆动[J]. 振动与冲击,2009,28(10):207-236.
DONG Ming-xiao, TUO Jian-zhi, REN Yi-xiang, et al. Optimalinput-shaper to suppress payload oscillation of bridge cranes with varying parameters[J]. Journal of Vibration And Shock, 2009,28(10):207-236. 
[7] Terashima, K, Shen, Y, and Yano, K. Modeling and optimal control of a rotary crane using the straight transfer transformation method[J]. Control Engineering Practice,2007, 15(9):1179–1192.
[8] 欧阳慧珉,张广明,王德明,等. 基于S型曲线轨道的桥式起重机最优控制[J], 振动与冲击,2014,33(23):140-144.
OUYANG Hui-min, ZHANG Guang-ming, WANG De-ming, et al. Optimal control for overhead cranes based on an S-shaped curve trajectory[J]. Journal of Vibration And Shock, 2014, 33(23):140-144.
[9] Hilhorst G, Pipeleers G, Michiels W. Reduced-Order H-2/H-infinity Control of Discre-Time LPV Systems with Experimental Validation on an Overhead Crane Test Setup[C] // Proceedings of the 2015 American Control Conference. Chicago, USA: IEEE, 2015.125-130.
[10] Chang C Y. Adaptive fuzzy controller of the overhead cranes with nonlinear disturbance[J]. IEEE Transactions on Industrial Informatics, 2007, 3(2):164-172.
[11] Saeidi H, Naraghi M, Raie A A. A neural network self tuner based on input shapers behavior for anti sway system of gantry cranes[J]. Journal of Vibration and Control, 2013, 19(13): 1936-1949.
[12] Almutairi N B, Zribi M. Sliding Mode Control of a Three-dimensional Overhead Crane[J]. Journal of Vibration and Control, 2009, 15(11): 1679-1730.
[13] Chin C M, Nayfeh A H, Mook D T. Dynamics and control of ship-mounted cranes[J]. Journal of Vibration and Control,2001, 7(6): 891-904.
[14] Skaare B, Egeland O. Parallel force/position crane control in marine operations[J]. IEEE Journal of Oceanic Engineering,2006, 131(3), 599-613.
[15]Park H S, Le N T. Modeling and Controlling the Mobile Harbour Crane System with Virtual Prototyping Technology[J]. International Journal of Control Automation and Systems,2012, 10(6):1204-1214.
[16]Le A T, Lee S G, Luong C N. Robust controls for ship-mounted container cranes with viscoelastic foundation and flexible hoisting cable[J]. Proceedings of the Institution of Mechanical Engineers Part I-Journal of Systems and Control Engineering,2015, 229(7): 662-674.
[17] 王鹏程, 方勇纯, 相吉磊, 等. 回转旋臂式船用起重机的动力学分析与建模[J]. 机械工程学报, 2011, 20: 34-40.
WANG Peng-cheng FANG Yong-chun XIANG Ji-lei, et al. Dynamics Analysis and Modeling of Ship-mounted Boom Crane[J]. Journal of Mechanical Engineering, 2011, 20: 34-40.
[18]Henry, R. J., Masoud, Z. N., Nayfeh, A. H. and Mook, D. T. (2001) Cargo pendulation reduction on ship-mounted cranes via boom-luff angle actuation. Journal of Vibration and Control 7(8): 1253–1264.
[19]Ham, S. H., Roh, M. I., Lee, H. and Ha, S. (2015). Multibody dynamic analysis of a heavy load suspended by a floating crane with constraint-based wire rope. Ocean Engineering 109, 145-160.
[20]Ngo, Q. H., Hong, K. S. (2012). Sliding-Mode Antisway Control of an Offshore Container Crane. IEEE-ASME Transactions on Mechatronics 17(2), 201-209.
[21]Ismail, R. M. T. R., That, N. D., Ha, Q. P. (2015). Modelling and robust trajectory following for offshore container crane systems. Automation in Construction 59, 179-187.
[22]Do, K. D., Jiang, Z. P., Pan, J. (2002). Universal controllers for stabilization and tracking of underactuated ships. Systems & Control Letters 47(4), 299-317.
[23]Serrano, M. E., Scaglia, G. J. E., Godoy, S. A. (2014). Trajectory Tracking of Underactuated Surface Vessels: A Linear Algebra Approach. IEEE Transactions on Control Systems Technology 22(3), 1103-1111.
[24]Sun Y G, Li W L, Dong S D , et al. (2015). Dynamics Analysis and Active Control of a Floating Crane[J]. Technical Gazette 22(6), 1383-1391.
[25]Hong, K. S. and Ngo, Q. H. (2009). Crane and ship loading thereof[P]. Korean Patent. 10-2009-0126946,2009.
[26]王阳. 船用起重机防摇装置设计研究王阳[J]. 舰船科学技术,2013, 35(7):105-108.
Wang, Y. (2013). Research and design of an anti-swing mechanism for a shipborne crane. Ship Science and Technology 35(7), 105-108. (In Chinese)
[27] W. Wang, J. Yi, D. Zhao and D. Liu, Design of a stable sliding mode controller for a class of second order underactuated systems, Proc. of IEEE Conference on Control Theory Application, Beijing, China (2004) 683-690.
[28] D. Qian, J. Yi and D. Zhao, Multi layers sliding mode control for a class of under-actuated systems, Proc. of IMACS Multi-conference on Computational Engineering in Systems Applications, Beijing, China (2006) 530-535.
[29] D. Qian, J. Yi, D. Zhao and Y. Hao, Hierarchical sliding mode control for series double inverted pendulums system, Proc. of the 2006 IEEE/RSJ, International Conference on Intelligent Robots and Systems, Beijing, China (2006) 4977-4982.
[30] D. Qian, J. Yi and D. Zhao, Hierarchical sliding mode control to swing up a pendubot, Proc. of the 2007 American Control Conference, New York, USA (2007) 5254-5259.
[31] 董达善,孙友刚,刘龙,等. 基于虚拟样机技术的浮吊补给作业动态特性仿真研究[J]. 机械科学与技术,2015, 34(3): 393-397.
Dong D S, Sun Y G, Liu L, et al. Simulation Study on Dynamic Characters of Floating Crane Based on Virtual Prototype Technology[J]. Mechanical Science and Technology for Aerospace Engineering 2015, 34(3):393-397.
[32] 李积德.船舶耐波性[M].哈尔滨:哈尔滨工程大学出版社,2007.
[33] 张雷, 郭科. 最优控制方法及其应用[M]. 成都: 四川大学出版社, 2012.

PDF(1852 KB)

Accesses

Citation

Detail

段落导航
相关文章

/