基于复刚度法,建立了计入基底层阻尼的理论模型,得到了共振梁法经典公式误差的理论表达式。通过数值仿真分析了主要影响因素对误差的影响规律,并分别使用钢和有机玻璃基底,测量了聚氨酯橡胶的损耗因子,对分析结果进行了试验验证。理论与试验结果的一致性表明:共振梁法测量材料阻尼时,经典公式忽略了基底层阻尼,可能导致较大误差。阻尼层与基底层损耗因子比、模量比和厚度比越小,忽略基底层阻尼导致的误差越大。其中模量比和厚度比的影响又可由复合梁与基底梁的弯曲刚度比反映,并且弯曲刚度比越小,误差越大。对于钢基底,当阻尼层损耗因子大于0.1,且复合梁与基底梁的弯曲刚度比大于1.1时,基底层阻尼可以忽略;对于有机玻璃基底,基底层阻尼一般不能忽略。
Abstract
In the traditional resonance beam method for measuring material damping, the base layer damping is usually neglected to cause some errors more or less. In order to theoretically estimate the error, a formula was then derived here based on the complex stiffness theory. By using this formula, the effects of some main factors on the error were carefully analyzed. Steel and organic glass were taken as base layers, respectively to measure the loss factor of urethane rubber. The analysis results were verified with tests. The test results agreed well with those of the theoretical analysis. It was shown that if material damping is measured with the resonance beam method, due to ignoring the base layer damping, a larger error can be caused; loss factor ratio, modulus one and thickness one of damping layer to base layer are three main factors, the smaller the three factors, the larger the error; the effects of modulus ratio and thickness one can be reflected with the flexural stiffness ratio of a composite beam to a base beam, the smaller the flexural stiffness ratio, the bigger the error; for steel base layer, if the loss factor of the damping layer exceeds 0.1 and the flexural stiffness ratio exceeds 1.1, the base layer damping can be neglected; for organic glass base layer, the base layer damping cannot be neglected.
关键词
共振梁法 /
阻尼材料 /
基底层阻尼 /
误差
{{custom_keyword}} /
Key words
resonnace beam method /
damping material /
base layer daming /
error
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Jones D I G. Handbook of viscoelastic vibration damping[M]. Wiley, 2001.
[2] 黄志诚, 秦朝烨, 褚福磊. 附加粘弹阻尼层的薄壁构件振动问题研究综述[J]. 振动与冲击, 2014, 33(7): 105-113.
Huang Zhi-cheng, Qin Zhao-ye, Zhu Fu-lei. A review about vibration problems of thin-walled structures with viscoelastic damping layer[J]. Journal of vibration and shock, 2014, 33(7): 105-113.
[3] 侯宏,余虎,孙亮. 基于共振法的黏弹性细棒力学参数宽频测试[J]. 振动与冲击, 2015, 34(9): 107-110.
Hou Hong, Yu Hu, Sun Liang. Determination of dyanmic parameters of viscoelastic thin bar using resonance measurement method under pulse excitation[J]. Journal of vibration and shock, 2015, 34(9): 107-110.
[4] 王超, 吕振华. 粘弹性阻尼材料力学参数测试实验用双边附加自由结构阻尼试件设计方法研究[J]. 振动与冲击, 2014, 33(5): 102-108.
Wang Chao, LÜ Zhen-hua. Research on the design of specimens damped both sides used in the measurement of viscoelastic material’s mechanical parameters[J]. Journal of vibration and shock, 2014, 33(5): 101-108.
[5] Oyadiji S O, Tomlinson G R. Characterization of the dynamic properties of viscoelastic elements by the direct stiffness and master curve methodologies, part 1: design of load frame and fixtures[J]. Journal of sound and vibration, 1995, 186(4): 623-647.
[6] Koruk H, Sanliturk K Y. Identification and removal of adverse effects of non-contact electromagnetic excitation in Oberst Beam Test Method[J]. Mechanical Systems and Signal Processing, 2012, 30: 274-295.
[7] ASTM E756-04: Standard test method for measuring vibration-damping properties of Materials[S]. American Society for Testing and Materials, 2010.
[8] GB/T 16406. 声学材料阻尼性能的弯曲共振测试方法[S]. 北京:国家技术监督局,1996.
GB/T 16406-1996.Flexural resonance testing method for damping properties of acoustical materials[S]. Beijing:State Bureau of Technical Supervision,1996.
[9] 胡卫强. 阻尼材料动态性能宽频带测量关键技术研究[D]. 西安:西北工业大学, 2009: 17-19.
Hu Wei-qiang. Study on the key techniques of the measurement of damping materials’ broadband dynamic performance[D]. Xi’an: Northwestern Polytechnical University, 2009: 17-19.
[10] Liao Y, Wells V. Estimation of complex Young's modulus of non-stiff materials using a modified Oberst beam technique[J]. Journal of Sound and Vibration, 2008, 316(1): 87-100.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}