结构温度与悬索桥主梁挠度的关联性分析

李明1,钟继卫1,2,严凤3

振动与冲击 ›› 2018, Vol. 37 ›› Issue (11) : 237-245.

PDF(1551 KB)
PDF(1551 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (11) : 237-245.
论文

结构温度与悬索桥主梁挠度的关联性分析

  • 李明1,钟继卫1,2,严凤3
作者信息 +

Correlation analysis between structure temperature and deflection of a suspension bridge girder

  • LI Ming1   ZHONG Ji-wei1,2   YAN Feng3
Author information +
文章历史 +

摘要

温度是桥梁的重要环境荷载,主梁挠度是悬索桥整体响应的一项重要指标,主梁挠度和结构局部温度间为高度非线性关系。两者的功率谱表明挠度长期趋势主要受温度影响,利用EMD方法可将挠度温度效应从挠度时程中分离出来。温度上升与下降阶段的挠度温度效应的比较结果显示,挠度温度效应不仅与局部位置的当前温度有关,还与这些位置的温度历程有关。以结构温度为输入、挠度温度效应为输出,建立支持向量回归模型(SVR model),计入温度历程影响的模型比只考虑当前温度的模型能更好地描述结构局部温度与挠度温度效应间的非线性关系,该模型精度较高、泛化性能较好。利用温度历程和SVR模型可方便地计算挠度温度效应,该方法具有一定的工程应用价值。

Abstract

For large-span suspension bridges, temperature is an important environmental load and their girder deflection is an important index of their whole responses. The relationship between them is highly nonlinear. The power spectra of temperature and girder deflection reveal that the long-term trend of the deflection is mainly affected by temperature. The deflection’s temperature effect can be separated from the deflection time history with the EMD method. The comparison between the deflection’s temperature effect in the stage of temperature rising and that in the stage of temperature dropping shows that the deflection’s temperature effect is related to not only the current temperature of local positions but also the temperature time history of these positions. Here, SVR model was built taking structure temperature as input and the deflection’s temperature effect as output. The simulation results showed that the SVR model considering the effects of temperature time history can better describe the complicated nonlinear relationship between the structure’s local temperature and the deflection’s temperature effect compared with the SVR one only considering the current temperature; the former has a higher accuracy and a better generalization performance; temperature time history and SVR model can be used to easily calculate the deflection’s temperature effect; this method has a certain engineering application value.

关键词

悬索桥 / 温度 / 挠度 / 功率谱 / 经验模态分解 / 主成分分析 / 温度历程 / 支持向量回归

Key words

suspension bridge / temperature / girder deflection / power spectrum / empirical mode decomposition (EMD) / principal component analysis / temperature time history / support vector regression (SVR)

引用本文

导出引用
李明1,钟继卫1,2,严凤3. 结构温度与悬索桥主梁挠度的关联性分析[J]. 振动与冲击, 2018, 37(11): 237-245
LI Ming1 ZHONG Ji-wei1,2 YAN Feng3. Correlation analysis between structure temperature and deflection of a suspension bridge girder[J]. Journal of Vibration and Shock, 2018, 37(11): 237-245

参考文献

[1] 杨红,孙卓,刘夏平,等. 基于多最小二乘支持向量机的桥梁温度挠度效应的分离[J]. 振动与冲击,2014, 33(1): 71-76.
YANG Hong,SUN Zhuo,LIU Xia-ping,et al. Separation of Bridge Temperature Deflection Effect Based on M-LS-SVM[J].Journal of Vibration and Shock, 2014, 33(1):71-76.
[2] ZHOU Yi, Sun Limin, Peng Zhi-jian. Mechanisms of Thermally  Induced Deflection of a Long-span Cable-stayed Bridge[J].  Smart Structures and Systems, 2015, 15(3):505-522.
[3] XIA Yong, CHEN Bo, ZHOU Xiao-qing et al. Field Monitoring and Numerical analysis of Tsing Ma Suspension Bridge Temperature Behavior[J]. Structural Control and Health
   Monitoring, 2013, 20:560-575.
[4] XU Y. L.,CHEN B., NG C. L. Monitoring Temperature Effect on a Long Suspension Bridge[J]. Structural Control and Health Monitoring, 2010, 17:632-653.
[5] 周志华. 机器学习[M]. 清华大学出版社,北京,2016.
ZHOU Zhi-hua. Machine Learning[M]. Tsinghua University Press, Beijing, 2016.
[6] 张学工. 模式识别(第三版)[M]. 清华大学出版社,北京,2010.
ZHANG Xue-gong. Pattern Recognition (Third Edition)[M]. Tsinghua University Press, Beijing, 2010.
[7] 陈永义,熊秋芬. 支持向量机方法应用教程[M]. 气象出版社,北京,2011.
CHEN Yong-yi,XIONG Qiu-fen. A Textbook on Support Vector Machines[M]. China Meteorological Press, Beijing, 2011.
[8] 杨坚,刘夏平,杨红,等. 桥梁结构变形中温度效应提取的一种方法[J]. 广州大学学报(自然科学版),2013, 12(3):38-44.
YANG Jian,LIU Xia-ping,YANG Hong,et al. A New Method to Extract Temperature Effect from Bridge Structure Deformation[J]. Journal of Guangzhou University(Natural
Science Edition), 2013, 12(3): 38-44.
[9] 刘夏平,杨红,孙卓,等. 基于LS-SVM的桥梁挠度监测中温度效应分离[J]. 铁道学报,2012, 34(10): 91-96.
LIU Xia-ping,YANG Hong,SUN Zhuo,et al. Study on Separation of Bridge Deflection Temperature Effect Based on LS-SVM[J]. Journal of the China Railway Society, 2012, 34(10): 91-96.
[10] 刘春华,项海帆,顾明. 大跨度桥梁抖振响应的空间非线性时程分析法[J]. 同济大学学报,1996, 24(4): 380-385.
LIU Chun-hua,XIANG Hai-fan,GU Ming. 3D Nonlinear Time-domain Buffeting Analysis for Long Span Bridges[J]. Journal of Tongji University, 1996, 24(4): 380-385.
[11] 刘志刚,陈艾荣,项海帆. 桥梁抖振反应谱研究[J]. 土木工程学报,2002, 35(1): 28-34.
LIU Zhi-gang,CHEN Ai-rong,XIANG Hai-fan. On Buffeting Responses Spectrum of Bridges[J]. China Civil Engineering Journal, 2002, 35(1): 28-34.
[12] 申建红,李春祥,李锦华. 基于小波变换和EMD提取非平稳风速中的时变均值[J]. 振动与冲击,2008, 27(12): 126-130.
SHEN Jian-hong, LI Chun-xiang, LI Jin-hua. Extracting Time-varying Mean of The Non-stationary Wind Speed Based on Wavelet Transform(WT) and EMD[J]. Journal of Vibration
    and Shock, 2008, 27(12): 126-130.
[13] 高强,李良敏,孟庆丰,等. EMD趋势分析方法及其应用研究[J]. 振动与冲击,2007, 26(8): 98-100.
GAO Qiang, LI Liang-min, MENG Qing-feng, et al. Trend Analysis Approach Based on Empirical Mode Decomposition[J]. Journal of Vibration and Shock, 2007,
26(8): 98-100.
[14] 梁升,王新晴,王东,等. 基于MM-EMD的改进HHT及应用[J]. 振动与冲击,2012, 31(20): 23-26.
LIANG Sheng, WANG Xin-qing, WANG Dong, et al. Improved HHT Based on MM-EMD and Its Application[J]. Journal of  Vibration and Shock, 2012, 31(20): 23-26.
[15] 陈隽,徐幼麟. 经验模分解在信号趋势项提取中的应用[J]. 振动、测试与诊断,2005, 25(2): 101-104.
CHEN Jun,XU You-lin. Application of EMD to Signal Trend Extraction[J]. Journal of Vibration, Measurement & Diagnosis,2005, 25(2): 101-104.
[16] 李苗,黄天立,任伟新. 温度影响下基于主成分分析和模态柔度的结构异常检测[J]. 振动与冲击,2011, 30(5): 83-87.
LI Miao,HUANG Tian-li,REN Wei-xin. Structural Novelty Detection under Temperature Variation Based on PCA and Modal Flexibility[J]. Journal of Vibration and Shock, 2011,
    30(5): 83-87.

PDF(1551 KB)

707

Accesses

0

Citation

Detail

段落导航
相关文章

/