机电液系统多参量耦合机理及动能刚度分析方法

赵松1 谷立臣1,2 杨彬1

振动与冲击 ›› 2018, Vol. 37 ›› Issue (11) : 27-33.

PDF(786 KB)
PDF(786 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (11) : 27-33.
论文

机电液系统多参量耦合机理及动能刚度分析方法

  • 赵松1 谷立臣1,2 杨彬1
作者信息 +

Multi-variable coupled mechanism and kinetic energy stiffness analysis method for a mechanical-electrical hydraulic system

  • ZHAO Song1 GU Lichen1,2 YANG Bin1
Author information +
文章历史 +

摘要

针对机电液系统运行过程中对性能可靠性分析及其评价方法的迫切需求,分析了机电液系统多能域参量在负载工况和动力源联合作用下的耦合机理,在建立机、电、液各子系统内部耦合效应作用链的基础上,提出机电液系统动能刚度分析方法,揭示了多源变参量作用下系统动能刚度的变化规律。以典型机电液系统——变转速泵控马达系统为研究对象,建立了其数学模型,分析了系统多能域参量对其运行状态的影响机制,阐明了动能刚度的物理意义以及对机电液系统运行性能评价的重要意义;通过机电液系统多源信号的变化率特征计算运行过程中的动能刚度角,并以此衡量动能刚度大小。在此基础上,研究动能刚度的变化规律。理论分析与实验验证均表明:动能刚度是机电液系统内部多参量的耦合效应,随多能量域参量变化;根据激励源不同,动能刚度分为正向刚度与逆向刚度,可以分别作为系统抵抗动力源变化和负载工况扰动性能的评价指标参数;在线检测并控制系统动能刚度的“刚-柔”匹配过程可以有效保障机电液系统运行性能的可靠性。

Abstract

Aiming at the urgent demand of performance reliability analysis and evaluation method for a mechanical-electrical hydraulic system, the coupled mechanism of multi-energy-domain parameters under the combined action of load condition and power source was analyzed. The function-effect chain among mechanical, electrical and hydraulic subsystems was established. Based on the above theoretical basis, the analysis method of kinetic energy stiffness(KES)suitable for the mechanical-electrical hydraulic system was proposed. The changing law of the system’s KES under the action of multi-source parameters was revealed. Taking a typical mechanical-electrical hydraulic system-variable speed pump controlled motor system as the study object, its mathematical model was built. The effect mechanism of multi-energy-domain parameters on the system’s running states was analyzed. The physical meaning of KES and its important meaning to evaluation of the mechanical-electrical hydraulic system’s running states were presented. In order to measure KES, the magnitude of KES was calculated with the change rate of multi-source signals of the system. The theoretical analysis and test results indicated that KES is the inner multi-variable coupled effect of the mechanical-electrical hydraulic system, it varies with multi-energy-domain parameters; according to different excitation sources, KES can be divided into forward KES and reversed KES, they can be the evaluation indexes for the system’s anti-power source varying and anti-load disturbance performances, respectively; on-line detecting and controlling the “rigid-flexible” matching process of the system’s KES can effectively safeguard the running performance reliability of the mechanical-electrical hydraulic system.

关键词

机电液系统 / 动能刚度 / 多参量耦合 / 性能可靠性

Key words

mechanical-electrical hydraulic system / kinetic energy stiffness / multi-variable coupling / performance reliability

引用本文

导出引用
赵松1 谷立臣1,2 杨彬1. 机电液系统多参量耦合机理及动能刚度分析方法[J]. 振动与冲击, 2018, 37(11): 27-33
ZHAO Song1 GU Lichen1,2 YANG Bin1. Multi-variable coupled mechanism and kinetic energy stiffness analysis method for a mechanical-electrical hydraulic system[J]. Journal of Vibration and Shock, 2018, 37(11): 27-33

参考文献

[1] 王恒,马海波,徐海黎,等.机械设备性能退化评估与预测研究综述[J].机械强度, 2013,35(6):716-723.
WANG Heng, MA Haibo, XU Haili, et al. Peview on Machinery Performance Degradation Assessment and Prognostics[J]. Journal of Mechanical Strength, 2013(6): 716-723.
[2] 何正嘉,曹宏瑞,訾艳阳,等.机械设备运行可靠性评估的发展与思考[J].机械工程学报,2014,50(2):171-186.
HE Zhengjia, CAO Hongrui, ZI Yanyang, et al. Developments and Thoughts on Operational Reliability Assessment of Mechanical Equipment[J]. Journal of Mechanical Engineering, 2014, 50(2) :171-186.
[3] CAESARENDRA W, WIDODO A, THOM P H,et a1. Combined probability approach and indirect data-driven method for bearing degradation prognostics[J]. IEEE Transactions on Reliability,2011,60(1):14-20.
[4] 关山,石志标,刘炎.基于多特征融合的刀具磨损识别方法[J].振动、测试与诊断,2014,34(3):576-584.
GUAN Shan, SHI Biaozhi, LIU Yan. Identification Method of Tool Wear Based on Multi-Feature Fusion[J]. Journal of Vibration, Measurement & Diagnosis, 2014, 34(3): 576-584.
[5] 祝海林,高澜庆.基于流量信号的液压系统故障诊断[J].北京科技大学学报,2001,23(1):66-70.
ZHU Hailin, GAO Lanqing. Faults Diagnosis of Hydraulic Systems based on Flow Signals[J]. Journal of University of Science and Technology Beijing, 2001,23(1):66-70.
[6] 杨彬,谷立臣,刘永.机电液系统动能刚度图示化在线识别技术[J].振动与冲击,2017,36(4):126-133.
YANG Bin, GU Lichen, LIU Yong. A Graphical Technique of Kinetic Stiffness Identification for Mechanical Electro-hydraulic System[J]. Journal of Vibration and Shock, 2017, 36(4): 126-133.
[7] Olugbenga Moses Anubi, Carl D. Crane III. A new active variable stiffness suspension system using a nonlinear energy sink-based controller[J]. Vehicle System Dynamics International Journal of Vehicle Mechanics & Mobility, 2013, 51(10):1588-1602.
[8] 姜万录,朱勇,郑直,等.电液伺服系统非线性振动机理及试验研究[J].机械工程学报,2015,51(4):175-184.
JIANG Wanlu, ZHU Yong, ZHENG Zhi, et al. Nonlinear Vibration Mechanism of Electro-hydraulic Servo System and Its Experimental Verification[J], Journal of Mechanical Engineering, 2015,51(4):175-184.
[9] 林荣川,郭隐彪,魏莎莎,等.非线性耦合力作用下液压马达低速波动机理分析[J].农业机械学报, 2011, 42(6): 213-218.
LIN Rongchuan, GUO Yinbiao, WEI Shasha, et al. Mechanism of Low Speed Fluctuation for Hydraulic Motor Based on Nonlinear Coupled Force[J], Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(6): 213-218.
[10] 王林鸿,杜润生,吴波,等.液压缸低速运动的动态分析[J].中国机械工程,2006,17(20):2098-2101.
WANG Linhong, DU Runsheng, WU Bo, et al. Dynamic Analysis on Slow Moving Hydraulic Cylinder[J], China Mechanical Engineering, 2006,17(20):2098-2101.
[11] 陈燎,周孔亢,李仲兴.空气弹簧动态特性拟合及空气悬架变刚度计算分析[J].机械工程学报,2010,46(4):93-98.
CHEN Liao, ZHOU Kongkang, LI Zhongxing. Dynamic Characteristics Fitting of Air Springs and Numerical Analysis of Air Suspensions with Variant Stiffness[J]. Journal of Mechanical Engineering, 2010,46 (4):93-98.
[12] 谷立臣,刘佩津,陈江城.基于电参量信息融合的液压系统状态识别技术[J].机械工程学报,2011,47(24):141-150.
GU Lichen, LIU Peijin, CHEN Jiangcheng. State Recognition Technique of Hydraulic System Based on Electrical Parameters Information Fusion[J], Journal of Mechanical Engineering, 2011,47 (24):141-150.
[13] Manring N D, Luecke G R. Modeling and Designing a Hydrostatic Transmission with a Fixed-Displacement Motor[J]. Journal of Dynamic Systems Measurement & Control, 1998, 120 (1): 45-49.
[14] Kugi A, Schlacher K, Aitzetmüller H, et al. Modeling and simulation of a hydrostatic transmission with variable displacement pump. Mathematics and Computers in Simulation, 2000, 53(4), 409-414.
[15] Paynter H M. Hydraulics by analog-an electronic model of a pumping plant[J], Boston Soc Civil Engng, 1959, 3(8): 197-219.
[16] HERZOG S N, NEVEU C D, PLACEK D G. The Benefits of Maximum Efficiency Hydraulic Fluids[J]. Machinery Lubrication, 2005, 25(7) :7-16.

PDF(786 KB)

Accesses

Citation

Detail

段落导航
相关文章

/