一种非线性能量阱的构建及瞬态特征分析

刘海平1,2,王耀兵1,2

振动与冲击 ›› 2018, Vol. 37 ›› Issue (11) : 55-60.

PDF(2527 KB)
PDF(2527 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (11) : 55-60.
论文

一种非线性能量阱的构建及瞬态特征分析

  • 刘海平1,2,王耀兵1,2
作者信息 +

Construction and study on dynamic performance of a novel nonlinear energy sink under transient excitation

  • LIU Hai-ping1,2, WANG Yao-bing1,2
Author information +
文章历史 +

摘要

使用单根欧拉梁作为非线性刚度元件,建立其边界固支条件下的理论模型。考虑线性刚度对单根欧拉梁输出刚度影响几乎可忽略,可有效构建一种近似纯立方刚度的非线性能量阱。以抑制星载设备在主动发射段来自运载火箭瞬态载荷的影响,建立结构板-星载设备-非线性能量阱系统动力学模型。利用所建模型进行仿真计算,并根据振动吸收和系统中各部分能量传递特征研究非线性能量阱的工作性能。研究结果表明,采用单根欧拉梁成功构建可在工程中应用的非线性能量阱,且给出了发生靶能量传递的初始条件。

Abstract

A single Euler beam was taken as a nonlinear stiffness element and its theoretical model was established under a fixed-fixed boundary condition. A nonlinear energy sink with an approximate pure cubic stiffness was constructed effectively ignoring the effect of linear stiffness on output stiffness of a single Euler beam to suppress effects of carrier rocket’s transient loads on space-borne equipment within active launch duration. A multi-DOF system’s dynamic model including structural plate, space-borne device and nonlinear energy sink was built. Using the established model, numerical simulation was conducted to investigate the nonlinear energy sink’s performance according to vibration absorption and energy transfer features among components of the system. The results showed that a nonlinear energy sink being applicable in engineering is constructed successfully using a single Euler beam; the initial condition to excite a target energy transfer is deduced.


关键词

非线性能量阱 / 瞬态载荷 / 欧拉梁 / 靶能量传递

Key words

nonlinear energy sink / transient excitation / Euler beam / target energy transfer

引用本文

导出引用
刘海平1,2,王耀兵1,2. 一种非线性能量阱的构建及瞬态特征分析[J]. 振动与冲击, 2018, 37(11): 55-60
LIU Hai-ping1,2, WANG Yao-bing1,2. Construction and study on dynamic performance of a novel nonlinear energy sink under transient excitation[J]. Journal of Vibration and Shock, 2018, 37(11): 55-60

参考文献

[1] H. Frahm. Device for damping vibrations of bodies, US Patent, 1911: 989.958.
[2] J. Ormandroyd, J.P. Den Hartog. The theory of dynamic vibration absorber [J]. Transaction of American Soceity of Mechanial Engineering, 1928, 50: A9-A22.
[3] 王现成, 郭蓬勃, 张益民, 龚耀清. 用吸振器消除框架梁横向振动的可行性[J]. 振动与冲击, 2015, 34(14): 179-182.
Wang Xiancheng, Guo Pengbo, Zhang Yimin, Gong Yaoqing. Feasibility of absorbing the transverse vibration of a frame-beam induced by attached oscillating equipment by using a vibrational absorber [J]. Journal of Vibration and Shock, 2015, 34(14): 179-182.
[4] 杨飞, 杨智春, 王巍. 吸振夹层壁板颤振抑制的吸振器频率设计[J]. 振动与冲击, 2009, 28(7): 65-68.
Yang Fei, Yang Zhichun, Wang Wei. Frequency design of dynamic vibration absorber for flutter suppression of sandwich panel [J]. Journal of Vibration and Shock, 2009, 28(7): 65-68.
[5] 徐振邦, 吴清文. 吸振器底座对减振效果的影响研究[J]. 振动与冲击, 2014, 33(13): 72-76.
Xu Zhenbang, Wu Qingwen. Influence of the base of vibration absorber on vibration attenuation effect [J]. Journal of Vibration and Shock, 2014, 33(13): 72-76.
[6] L. Pipes. Analysis of a nonlinear dynamic vibration absorber [J]. Journal of Applied Mechanics, 1953, 20: 515-518.
[7] F.R. Arnold. Steady state behaviour of systems provided with nonlinear dynamic vibration absorbers [J]. Journal of Applied Mechanics, 1955, 22: 487-492.
[8] 刘海平, 杨建中, 罗文波, 钱志英. 新型欧拉屈曲梁非线性动力吸振器的实现及抑振特性研究[J]. 振动与冲击, 2016, 35(11): 155-160.
Liu Haiping, Yang Jianzhg, Luo Wenbo, Qian Zhiying. Realization and vibration suppression ability of a new novel Euler buckled beam nonlinear vibration absorber [J]. Journal of Vibration and Shock, 2016, 35(11): 155-160.
[9] 楼京俊, 唐斯密, 朱石坚, 赵存生. 改进的本质非线性吸振器宽频吸振系数域研究[J]. 振动与冲击, 2011, 30(6): 218-222.
Lou Jingjun, Tang Simi, Zhu Shijian, Zhao Cunsheng. Parametric range of improved essentially nonlinear absorber on broad frequency band [J]. Journal of Vibration and Shock, 2011, 30(6): 218-222.
[10] 唐斯密, 朱石坚, 楼京俊. 非线性吸振器刚度调整策略研究[J]. 武汉理工大学学报, 2011, 35(1): 163-166.
Tang Simi, Zhu Shijian, Lou Jingjun. Study on the tactic of adjusting stiffness of the nonlinear dynamic vibration absorber [J]. Journal of Wuhan University of Technology, 2011, 35(1): 163-166.
[11] 罗尧, 王慧. 非线性弹簧阻尼减振装置的探究[J]. 物理与工程, 2011, 21(5): 13-16.
Luo Yao, Wang Hui. Study of the nonlinear damping spring shock absorbers [J]. Physics and Engineering, 2011, 21(5): 13-16.
[12] A.F. Vakakis, O. Gendelman. Energy pumping in nonlinear mechanical oscillators: part Ⅱ – resonance capture [J]. Transactions of the ASME, Journal of Applied Mechanics, 2011, 68: 42-48.
[13] O. Gendelman, Li. Manevitch, A.F. Vakakis, R.M’Closkey. Energy pumping in nonlinear mechanical oscillators: part Ⅰ - dynamics of underlying Hamiltonian systems [J]. Transactions of the ASME, Journal of Applied Mechanics, 2001, 68: 34-41.
[14] D. Kremer, K.F. Liu. A nonlinear energy sink with an energy harvester: Transient responses [J]. Journal of Sound and Vibration, 2014, 333: 4859-4880.
[15] 马兴瑞,韩增尧等, 卫星与运载火箭力学环境分析方法及试验技术[M]. 科学出版社, 2014.
[16] Johnson C.D.,Wilke P.S.,Pendleton S.C.Recent Launches using the SoftRide Whole-Spacecraft Vibration Isolation System[C]. AIAA Space 2001 Conference and Exposition, 2001, 4078: 1-10.
[17] Maly J.R., Fowler E.C., Biskner A.C. Structural Models and Dynamic Measurements of Satellite Launch Adapter Structures[C]. Proceedings of 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2009: 1-12.
[18] Vangbo M. An analytical analysis of a compressed bistable buckled beam[J]. Sens. Actuators A, 1998, 69(3): 212-216.

PDF(2527 KB)

Accesses

Citation

Detail

段落导航
相关文章

/