基于Pareto排序遗传算法的改进型扩张室压力脉动衰减器多目标优化

杨 帆,邓 斌,王国志,吴文海

振动与冲击 ›› 2018, Vol. 37 ›› Issue (12) : 1-8.

PDF(1994 KB)
PDF(1994 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (12) : 1-8.
论文

基于Pareto排序遗传算法的改进型扩张室压力脉动衰减器多目标优化

  • 杨 帆,邓 斌,王国志,吴文海
作者信息 +

Mult-optimization on improved expansion chamber hydraulic pulsation attenuators using a NSGA

  • YANG Fan    DENG Bin    WANG Guozhi    WU Wenhai
Author information +
文章历史 +

摘要

针对传统扩张室式压力脉动衰减器低、高频脉动衰减明显的不足,提出了两种改进结构。在衰减器外形尺寸不变的的前提下,以最大化其回冲频率和固有频率处的滤波性能为目标,利用实数编码的标准遗传算法与Pareto排序的遗传算法分别对这两种改进结构进行参数优化,并结合一维平面波理论计算了其插入损失。在运用遗传算法进行优化的过程中,对影响优化的算法主要驱动算子、Pareto最优解、Pareto前沿的选取进行了讨论。结果表明,二维判据空间取得Pareto最优时,得到滤波器的各个结构参数非劣解,优化后的改进型扩张室式压力脉动衰减器在基频及其一次谐频处具有最优的滤波性能。

Abstract

Two improved configurations were put forward, aiming at obvious disadvantage of the traditional expansion chamber hydraulic suppressors that low and high frequency pulsation is attenuated insufficiently. In order to enhance filtering properties at flow ripple frequency and natural frequency under limited space conditions, the insertion loss (IL) on the basis of plane wave theory were calculated by using the real number coding standard genetic algorithm (GAs) and nondominated sorting genetic algorithm (NSGA) to optimize structure parameters. In the process of utilizing genetic algorithms, the main driving operators, Pareto optimal set and Pareto front were discussed. Results showed that when the two-dimensional criterion space got Pareto optimal solutions, several structure parameters' noninferior solutions could be got and the maximum value of IL was optimally obtained at the desired frequencies.

关键词

压力脉动衰减器 / 扩张室型 / 非支配排序遗传算法 / 多目标优化

Key words

  / Pulsation attenuator Expansion chamber Nondominated sorting genetic algorithm (NSGA) Multi-objective optimization

引用本文

导出引用
杨 帆,邓 斌,王国志,吴文海. 基于Pareto排序遗传算法的改进型扩张室压力脉动衰减器多目标优化[J]. 振动与冲击, 2018, 37(12): 1-8
YANG Fan DENG Bin WANG Guozhi WU Wenhai. Mult-optimization on improved expansion chamber hydraulic pulsation attenuators using a NSGA[J]. Journal of Vibration and Shock, 2018, 37(12): 1-8

参考文献

[1] KOJIMA, E., ICHIYANAGI, T. Research on pulsation attenuation characteristics of silencers in practical fluid power systems[J]. International Journal of Fluid Power, (2000),1(2), 29-38.
[2] HARRISON, K.A., EDGE, K.A. Reduct-ion of axial piston pump pressure ripple[J]. Proceedings of the Institution of Mechan-ical Engineers, PartⅠ: Journal of Syste-ms and Control Engineering, 2000,214(1), 53-64.
[3] KWONG A H M, EDGE, K.A. A method to reduce noise in hydraulic systems by optimzing pipe clamp locations[J]. Proceedings of the Institution of Mechanical Engineers, PartⅠ: Journal of Systems and Control Engineering, 1998, 212(4), 267-280.
[4] KEL, A.L. Resonant frequency of an adjustable Helmholtz resonator in a hydraulic system[J]. Archive of Applied Mechanics, 2009, 79(12), 1115-1125.
[5] de BEDOUT J M, FRANCHEK M A, BERNHARD R J, et al. Adaptive-passive noise control with self-tuning Helmholtz resonators[J]. Journal of Sound and Vibration, 1997, 202(1), 109-123.
[6] Munjal, M.L. Acoustics of Ducts and Mufflers (Second Edition)[M]. New York: Wiley-Intersci-ence, 2014.
[7] Ji Z L, Sha J Z. Four-pole parameters of a duct with low Mach number flow[J]. Journal of the Acoustical Society of America, 1995, 98(5), 28-48-2850.
[8] Easwaran, V., Munjal, M.L. Plane wave analysis of conical and exponential pipes with incompressible mean flow[J]. Journal of Sound and Vibration, 1992, 152(1),73-93.
[9] Munjal, M.L., Galaitsis, A.G. and Ver, I.L. Passive Silencers, Noise and Vibration Control Engineering (eds I.L. Ver and L.L. Beranek)[M]. John Wiley & Sons, Inc., New York, 2006.
[10] Eriksson, L.J. Higher-order mode effects in circular ducts and expansion chambers[J]. Journal of the Acoustical Society of America, 1980, 68(2), 545-550.
[11] Munjal, M.L. Exhaust noise and its control[J]. Shock and Vibration Digest, 1977, 9(8), 21-32.
[12] Munjal, M.L., Sreenath, A.V. and Narasimhan, M.V. Velocity ratio in the analysis of linear dynamical systems[J]. Journal of Sound and Vibration, 1973, 26(2), 173-191.
[13] Peat, K.S. A numerical decopling analysis of perforated silencer elements[J]. Journal of Sound and Vibration,1988, 123(2), 199-212.
[14] Sullivan, J.W. A method for modeling perforated tube muffler components.Ⅰ. Theory[J]. Journal of the Acoustical Society of America, 1979, 66(3), 772-778.
[15] Sullivan, J.W. A method for modeling perforated tube muffler components.Ⅱ. Applications[J]. Journal of the Acoustical Society of America, 1979, 66(3), 779-788.
[16] Karlsson, M., Glav, R., Abom, M. The Herschel-Quincke tube: The attenuation conditions and their sensitivity to mean flow[J]. Journal of the Acoustical Society of America, 2008, 124(2), 723-732.
[17] Desantes, J.M., Torregrosa, A.J., Climent, H., et al. Acoustic performance of a Herschel-Quincke tube modified with an interconnecting pipe[J]. Journal of Sound andVibration,2005, 284(1/2),283-298, .
[18] Z. Michalewicz. Genetic Algorithms+Data Stru-ctures=Evolutionary Programs[M]. Springer, B-erlin, 1992.
[19] Goldberg, D. Genetic Algorithms in Search, Optimization and Machine Learning[M]. Addison Wesley, Reading, MA, 1989.
[20] Andries. P. Engelbrecht. Computational Intelligence: An Introduction, 2E[M]. John Wiley & Sons, Inc., New York, 2010.
[21] Baker, J.E. Reducing Bias and Inefficiency in The Selection Algorithm. In J. Grefenstette, editor[C]//Proceedings of the Second Internatio-nal Conference of Genetic Algorithms,  1987, Pages 14-21, Hillsdale, N.J., Erlbaum,.
[22] Mitsuo Gen, Runwei Cheng. Genetic Algorithms and Engineering Optimization[M]. John Wiley & Sons, Inc., New York, 2000.
[23] J. Horn, N. Nafpliotis, and D.E. Goldberg. A Niched Pareto Genetic Algorithm for Multiobjective Optimization[C]//In Proceedings of the IEEE Symposium on Circuits and Systems, 1991, 2264-2267.
[24] 张燕,杨行保,陈花玲. 穿孔结构流体滤波器参数优化设计研究[J]. 振动与冲击, 2000, 19(01): 24-28.
[25] K.S. Peat, The matrix of a uniform duct with a linear temperature gradient[J]. Journal of Sound and Virbration, 1988, 123(1),43-53.
[26] Ji Z L, Sha J Z, Four-pole parameters of a duct with low Mach number flow[J]. Journal of the Acoustical Society of America, 1995, 98(5),2848-2850.
[27] Kim J, Soedel W. General formulation of four pole parameters for three-dimensional cavities utilizing modal expansion, with special attention to the annular Cylinder[J]. Journal of Sound and Vibration, 1989, 129(2),237-254.
[28] Fang Z, Ji Z L, Finite element analysis of transversal modes and acoustic attenuati-on characteristics of perforated tube sile-Ncers[J]. Noise Control Engineering Journal,
     2012, 60(3), 340-349.
[29] Liu C, Ji Z L, Fang Z, Numerical analysis of acoustic attenuation and flow resistance of double expansion chamber silencers[J]. Noise Control Engineering Journal, 2013, 61(5), 487-499.
[30] Ji Z L, Sha J Z, A boundary element approach to sound transmission/radiation problems[J]. Jour-nal of Sound and Vibration, 1997, 206(2), 261-265.
[31] Ji Z L, Boundary element acoustic analysis of hybrid expansion chamber silencers with perforated facing[J]. Engineering Analysis with Boundary Elements, 2010, 34(7), 690-696.
[32] Y-C Chang, L-J Yeh and M-C Chiu, Shape optimization on double-chamber mufflers using a genetic algorithm[J], Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2005, 219(219): 31-42.
[33] M.C. Chiu, Shape optimization of double-cham-ber side mufflers with extended tube by using four-pole matrix and simulated annealing method[J], Journal of Mechanics, 2008, 24(1), 31-43.

PDF(1994 KB)

620

Accesses

0

Citation

Detail

段落导航
相关文章

/