以远场类谐和地震动、近断层向前方向性地震动与近断层滑冲型地震动三类长周期地震动为研究对象,首先在分析长周期地震动最大瞬时输入能与SDOF体系最大位移响应相关性的基础上,提出瞬时输入能比的概念,对比分析探讨不同类型长周期地震动作用下结构的破坏模式;然后,基于Hilbert-Huang变换,以某12层RC框架结构为例,分析长周期地震动作用下控制结构弹塑性地震响应的IMF分量,并对不同类型长周期地震动的瞬时能量曲线及累积能量曲线进行对比分析,在此基础上提出有效长周期地震动、有效峰值及能量梯度的概念,分别从频域与时域角度分析长周期地震动对高层结构的作用机理。结果表明:长周期地震动的有效峰值显著大于普通地震动,揭示了长周期地震动作用下高层结构的地震响应大于普通地震动的内在机理;能量梯度对比分析表明不同类型长周期地震动的能量释放特征差异显著,揭示了远场类谐和地震动的脉冲循环作用机理及近断层向前方向性地震动与近断层滑冲型地震动的脉冲冲击作用机理,其中,前者易使结构发生累积损伤破坏,后者易使结构发生首次超越破坏。
Abstract
Three types of longperiod ground motions including farfield harmoniclike ground motions, nearfault forwarddirectivity ground motions, and nearfault flingstep ground motions were selected as objects. Firstly, based on the analysis of correlation between the maximum instantaneous input energy of longperiod ground motion and the maximum displacement response of a SDOF system, the concept of instantaneous input energy ratio was proposed, and the structural failure modes under different types of longperiod ground motions were discussed. Then, one 12layer RC frame structure was taken for example, and the controlled IMF components of longperiod ground motions for the elasticplastic seismic response were analyzed based on HilbertHuang Transform (HHT). Besides, the instantaneous energy curves and accumulative energy curves for different types of longperiod ground motions were investigated. And on this basis, the concepts of valid longperiod ground motion, valid peak and energy gradient were proposed, and the action mechanisms of longperiod ground motions on highrise structures were studied from the perspectives of frequency and time domains, respectively. The results show that the valid peaks of longperiod ground motions are larger than those of ordinary ground motions, and it reveals the internal mechanism which causes the seismic responses of highrise structures under longperiod ground motions are larger than those under ordinary ground motions; the analysis of energy gradients shows that the energy release characteristics of different types of longperiod ground motions are obviously different, and it reveals the action mechanisms of longperiod ground motions. For the farfield harmoniclike ground motion, it has the pulse cyclic action mechanism which is easy to cause the cumulative damage failure; for the nearfault forwarddirectivity ground motion and nearfault flingstep ground motion, they have the pulse impact action mechanism which is easy to cause the first exceed failure.
关键词
长周期地震动 /
高层结构 /
破坏模式 /
作用机理 /
弹塑性地震响应
{{custom_keyword}} /
Key words
long-period ground motion /
high-rise structure /
failure mode /
action mechanism /
elastic-plastic seismic response
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 于琦,孟少平,吴京. 基于变形与能量双重准则的钢筋混凝土结构地震损伤评估[J]. 土木工程学报,2011,44(5):16-23.
YU Qi, MENG Shao-ping, WU Jing. Deformation and energy-based seismic damage evaluation of reinforced concrete structures[J]. China Civil Engineering Journal, 2011,44(5): 16-23.
[2] 黄庆丰,王大富. 钢筋混凝土结构的地震损伤分析及能量参数模型[J]. 地震工程与工程震动,2010,30(5):93-99.
HUANG Qing-feng, WANG Da-fu. Analysis of seismic damage to reinforced concrete structures and energy parameter model[J].Earthquake engineering and engineering vibration, 2010, 30(5):93-99.
[3] 胡冗冗,王亚勇. 地震动瞬时输入能量与结构最大位移反应关系研究[J]. 建筑结构学报,2000,21(1):71-76.
HU Rong-rong, WANG Ya-yong. A study on relation instantanesous energy of earthquake strong motion and maximum displacement response of structures[J]. Journal of Building Structures, 2000,21(1):71-76.
[4] 杜东升,王曙光,刘伟庆,等. 长周期地震动影响因素及频谱参数研究[J]. 建筑结构学报,2014,35(s1):1-8.
DU Dong-sheng, WANG Shu-guang, LIU Wei-qing, et al. Study on affecting factors and spectral parameters of long period ground motions[J]. Journal of Building Structures, 2014,35(s1):1-8.
[5] 李雪红,王文科,吴迪,等. 长周期地震动的特性分析及界定方法研究[J]. 振动工程学报,2014,27(5):685-692.
LI Xue-hong, WANG Wen-ke, WU Di, et al. The bounded method and characteristics analysis for long-period ground motions[J]. Journal of Vibration Engineering,2014,27(5):685-692.
[6] Kalkan E, Kunnath S K. Effects of fling step and forward directivity on seismic response of buildings[J]. Earthquake Spectra, 2006, 22(2):367-390.
[7] 陈清军,袁伟泽,曹丽雅. 长周期地震波作用下高层建筑结构的弹塑性动力响应分析[J]. 力学季刊,2011,32(3):403-410.
CHEN Qing-jun, YUAN Wei-ze, CAO Li-ya. Elasto-plastic dynamic response analysis of high-rise structures under long period ground motion[J]. Chinese Quarterly Mechanics,2011, 32(3): 403-410.
[8] 杉本訓祥,塩原,勝俣英雄,等. 縮小 20 層 RC 造建物試験体の長周期地震動による震動実験(その1~その11)[C].日本建築学会大会学術講演梗概集(北海道),2013:653-674.
SUGIMOTO Kuniyoshi, et al. Shaking table test of 1/4 scaled 20 story RC building under long period ground motion[C]. 日本建築学会大会学術講演梗概集(北海道),2013:653-674.
[9] 马华,曹飞,唐贞云,等. 高层框架结构E-defense振动台试验弹塑性时程对比分析[J].地震工程与工程振动,2015,35(1):143-149.
MA Hua, CAO Fei, TANG Zhen-yun, et al. Comparative analysis of E-defense shaking table test and nonlinear time history simulation for high-rise frame structure[J].Earthquake engineering and engineering vibration, 2015, 35(1):143-149.
[10] 杨迪雄,潘建伟,李刚. 近断层脉冲型地震动作用下建筑结构的层间变形分布特征和机理分析[J].建筑结构学报,2009,30(4):108-118.
YANG Di-xiong, PAN Jian-wei, LI Gang. Deformational distribution feature and mechanism analysis of building structures subjected to near-fault pulse-type ground motions[J]. Journal of Building Structures, 2009, 30(4):108-118.
[11] Yang D X, Pan J W, Li G. Non-structure-specific intensity measure parameters and characteristic period of near-fault ground motions[J] Earthquake engineering and structural dynamics, 2009, 38:1257-1280.
[12] 王博,白国良,代慧娟. 典型地震动作用下长周期单自由度体系地震反应分析[J]. 振动与冲击,2013,32(15):190-196+214.
WANG Bo, BAI Guo-liang, DAI Hui-juan. Seismic response analysis of long-period SDOF system under typical ground motions[J]. Journal of Vibration and Shock,2013,32(15): 190-196+214.
[13] 吴琛,周瑞忠. Hilbert-Huang变换在提取地震信号动力特性中的应用[J]. 地震工程与工程振动,2006, 26(5):41-46.
WU Chen, ZHOU Rui-zhong. Application of Hilbert-Huang transform in extracting dynamic properties of seismic signals[J].Earthquake engineering and engineering vibration, 2006, 26(5):41-46.
[14] 张郁山. 希尔伯特-黄变换(HHT)与地震动时程的希尔伯特谱—方法与应用研究[D]. 北京:中国地震局地球物理研究所,2003.
ZHANG Yu-shan. Hilbert-Huang transform and Hilbert spectrum of earthquake ground motion—study of methods and applications[D]. Beijing: China Seismological Bureau, 2003.
[15] GB 50011-2010, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社,2016.
GB 50011-2010, Code for seismic design of buildings[S]. Beijing: China Building Industry Press, 2016.
[16] DGJ08-9-2013,抗震设计规程[S]. 北京:中国建筑工业出版社,2013.
DGJ08-9-2013, Code for seismic design of buildings[S]. Beijing: China Building Industry Press, 2013.
[17] 陆新征,叶列平,缪志伟,等. 建筑抗震弹塑性分析—原理、模型与在ABAQUS, MSC.MARC和SAP2000上的实践[M]. 北京:中国建筑工业出版社,2009.
LU Xin-zheng, YE Lie-ping, Miao Zhi-wei, et al. Elasto-plastic analysis of buildings against earthquake—theory, model and implementation on ABAQUS, MSC.MARC and SAP2000[M]. Beijing: China Architecture & Building Press, 2009.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}