一种基于激光超声的薄层金属材料厚度检测方法研究

刘永强,杨世锡,甘春标

振动与冲击 ›› 2018, Vol. 37 ›› Issue (12) : 147-152.

PDF(1260 KB)
PDF(1260 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (12) : 147-152.
论文

一种基于激光超声的薄层金属材料厚度检测方法研究

  • 刘永强,杨世锡,甘春标
作者信息 +

Thickness measurement for thin metal material with the use of laser generated ultrasound

  • LIU Yongqiang,YANG Shixi,GAN Chunbiao
Author information +
文章历史 +

摘要

针对传统超声测厚法声波频率低、衰减大,难以检测薄层材料厚度的问题,提出一种基于激光超声的薄层材料厚度检测新方法。该方法所用激光超声波中心频率高、衰减小,可实现声波的非接触式激发与接收,厚度检测精度高。提出一种超声回波信号特征量提取方法,能精确获取声波在薄层材料内传播时间,进一步减小了厚度检测误差。搭建实验系统对不同厚度铝合金试样块进行检测,实验结果验证了所提方法的可行性。

Abstract

Traditional ultrasonic technique is failed in measuring the thickness of thin metal for its limitations in limited frequency domain and high attenuation rate. In this work, a novel approach for measurement of thin metal material thickness was presented to solve the problem. The given approach is more suitable in thickness measurement for its broader frequency domain and lower attenuation rate. A new signal feature extraction method was presented at the same time to gain the travel time of the waves. An example of the approach and experimental measurement was given for alloy with different thickness. The experimental results show the reliability of the approach.

关键词

激光超声 / 脉冲反射 / 时域信号分析 / 测厚

Key words

 laser-generated ultrasound / pulse-echo / time domain / thickness measurement

引用本文

导出引用
刘永强,杨世锡,甘春标. 一种基于激光超声的薄层金属材料厚度检测方法研究[J]. 振动与冲击, 2018, 37(12): 147-152
LIU Yongqiang,YANG Shixi,GAN Chunbiao. Thickness measurement for thin metal material with the use of laser generated ultrasound[J]. Journal of Vibration and Shock, 2018, 37(12): 147-152

参考文献

1. Guo Xi-juan, Zhao Qiang, Xi Feng-feng. Design Segmented Stiff Skin for a Morphing Wing [J]. Journal of Aircarft , 2016,53(4):962-970.
2. Skulborstad A J, Swartz S M, Goulbourne N C. Biaxial mechanical characterization of bat wing skin [M]. Bioinspiration & Biomimetics, 2015,10(3):1-16.
3. 肖锋,华宏星,谌勇,等.潜艇湿表面抗冲覆盖层压缩特性及抗冲击性能研究[J].振动与冲击.2013, 32(18):126-132.
XIAO Feng, HUA Hong-xing,CHEN Yong, et al. Compression and shock resistance performance of an anti-shock layer coated on wet surface of submarine[J].Journal of Vibration and Shock, 2013,32(18):126-132.
4. 邵泽波,刘兴德.无损检测[M].北京:化学工业出版社,2011,37-86.
SHAO Ze-bo, LIU Xing-de. Nondestructive tesing[M].BeiJing: Chemical Industry Press,2011, 37-86.
5. 唐力伟,张晓涛,王平.管状金属构件裂纹电磁声发射激发特性试验研究[J].振动与冲击,2014,33(19): 48-58.
TANG Li-wei, ZHANG Xiao-tao, Wang Ping. Tests for exciting features of electromagnetic acoustic emission of tubular metal parts’ crack[J]. Journal of Vibration and Shock,2014,33(19): 48-58.
6. 李家伟.无损检测手册[K].北京:机械工业出版社,2012.3-45.
LI Jia-wei. Nondestructive testing manual[M]. BeiJing: China Machine Press, 2012.3-45
7. Dixon S, Edwards C, Palmer S B. High accuracy non-contact ultrasnic thickness gauging of aluminium sheet using electromagnetic acoustic transducers [J]. Ultrasonics, 2001,39(6):445- 453.
8. Latyshev A V, Yushkanov A A. Nanofilm thickness measurement by resonant frequencies [J]. Quantum Electronics,2015,45(3): 270-274.
9. Luo W, Rose J L. Lamb wave thickness measurement potential with angle beam and normal beam excitation [J]. Materials Evaluation,2004,62(8): 860-866.
10. Amziane A, Amari M, Mounier D,et al. Laser ultrasonics detection of an embedded crack in a composite spherical particle [J]. Ultrasonics, 2012, 52(1):39-46.
11. Monchalin J P, Aussel J D. Ultrasonic velocity and attenuation determination by laser ultrasonics [J]. Journal of Non-destructive Evaluation, 1990,9(4): 211-221.
12. 丁一珊,杨世锡,甘春标. 利用激光超声技术研究金属裂纹缺陷的检测波特性[J].振动与冲击,2015,34 (14):33-37.
DING Yi-Shan, YANG Shi-xi, GAN Chun-biao. Detecting features of defect metal based on laser ultrasonic technique. Journal of Vibration and Shock, 2015,34(14):33-37.
13. Rose L R. Point-source representation for laser-generated ultrasound[J]. Journal of The Acoustical Society of America, 1983,75(3):723-732.
14. Keiiti A K,Richards G. Quantitative Seismology[M].Freeman SanFrancisco,1980, Chapter6, 190- 193.
15. Dehoop A, Vanderhijden G. Generation of Acoustic-waves By an Impulsive Line Source in a Fluid Solid Configuration With a Plane Boundary[J]. Journal of The Acoustical Society of America. 1983,74(1):333-342.
16. 吴宗泽.机械设计师手册[M].第二版,北京:机械工业出版社,2008:7-12.
WU Zong-ze. Handbook for mechanical designers. Second Edition, BeiJing: China Machine Press,2008:7-12.
17. Flandrin P, Rilling G, Goncalves P. Empirical mode decomposition as a filter bank[J]. IEEE Signal Processing Letters,1999,21(3):285-288.
18.  Wu Z H, Huang N E. A study of the characteristics of white noise using the empirical mode decomposition method[J]. Proceedings of The Royal Society A-Mathematical Physical and Engineering Sciences. 2004,460(2046):1597-1611.
19. Tables of Physical & Chemical Constants(16th edition 1995.2.4.1 The speed and attenuation of sound, Kaye & Laby  Online, www.kayelaby.npl.co.uk,National Physic Laboratory, Version 1.0.2005.

PDF(1260 KB)

664

Accesses

0

Citation

Detail

段落导航
相关文章

/