汽车侧窗风振噪声与侧窗开度是密不可分的,在现有针对汽车侧窗风振噪声数值研究中,都仅限于固定开度的仿真计算,很难准确找出最大风振噪声对应的侧窗开度。采用非结构网格弹性变形与局部重构网格相结合的动网格技术计算简易车厢的风振噪声,仿真计算结果与传统方法计算结果吻合良好。在此基础上,运用该方法实现了实车侧窗连续开度的风振噪声计算,通过与传统方法和实车道路试验进行对比,进一步验证了该数值计算方法的正确性。结果表明该数值模拟方法突破了以往固定开度风振噪声研究的局限,更真实地模拟侧窗连续开启这一动态过程。通过该方法准确找出了最大风振噪声对应的侧窗开度,并对该开度下的风振噪声特性进行了分析。在对风振噪声计算与特性分析基础上,通过建立汽车左后侧窗非光滑表面雨挡模型,运用多岛遗传算法,对其结构参数进行了多目标优化,取得了较为理想的降噪效果。结果表明附加上雨挡装置后,乘员舱后部漩涡明显减少,流速与流量降低,使得回流至前排座椅的涡速也同步下降,同时雨挡装置将左后窗表面一部分层流转化成为湍流,直接影响了该区域附近的湍流能量与强度,间接降低了驾驶员耳旁的声压级,有雨挡装置相较无雨挡装置,驾驶员耳旁监测点的噪声值从129dB降至123.82dB,降低约5dB,幅度达到4%。
Abstract
Vehicle buffeting noise and opening degree of sidewindow are inextricable. At present, numerical study of wind buffeting noise is limited to the simulation of fixed opening. To find out the window opening degree which is responsible for the maximum wind buffeting noise, it is necessary to study wind buffeting noise of continuous opening vehicle sidewindows . The dynamic mesh technology integrating partial unstructured grids with a springbased smoothing method and a remeshing method was applied to simulate the cavity buffeting noise. Simulation results show that virtual prediction agrees well with the traditional prediction. This method was employed to compute the vehicle buffeting noise based on continuous opening degree of sidewindow. The results of simulation coincide well with the results of traditional method and road test. It demonstrates that this method has surpassed the method of fixed opening degree, which more practically simulates the buffeting noise in the process of opening the sidewindow. Buffeting characteristics was analyzed under the case of opening degree corresponding to maximum noise. Through the establishment of non-smooth surface rain guard near the rear side window, ideal noise reduction effect was obtained by using the multi-objective genetic algorithm and optimizing structure parameters. The results show that the rain guard can reduce the number of rear vortex of passenger compartment, decrease the flow velocity of reflux vortex, and transform laminar flow around the window into turbulence, thus the energy and intensity of turbulent flow are directly affected by such rain guard structure. Sound pressure level of monitoring point declines from 129 dB to 123.82 dB, the extent and rate of descent are about 5 dB and 4%, respectively.
关键词
动网格 /
雨挡 /
风振噪声 /
优化
{{custom_keyword}} /
Key words
dynamic meshes /
rain guard /
buffeting noise /
optimization
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 傅立敏. 汽车设计与空气动力学[M]. 北京:机械工业出版社,2011.
Fu Li-min. Automobile Design & Aerodynamics[M]. Beijing: China Machine Press, 2011.
[2] Lemaitre G, Vartanian C, Lambourg C, et al. A psychoacoustical study of wind buffeting noise[J]. Applied Acoustics, 2015, 95: 1-12.
[3] Mendonca F G. CFD/CAE combination in open cavity noise predictions for real vehicle sunroof buffeting[J]. SAE International Journal of Passenger Cars - Mechanical Systems, 2013, 6(1): 360-368.
[4] 杨振东,谷正气,董光平,等. 汽车天窗风振噪声分析与优化控制[J]. 振动与冲击, 2014, 33(21): 193-201.
Yang Zhen-dong, Gu Zheng-qi, Dong Guang-ping, et al. Analysis and optimal control for car sunroof buffeting noise[J]. Journal of Vibration and Shock, 2014, 33(21): 193-201.
[5] 胡亚涛,薛永飞,陈军,等. 车辆天窗气动噪声的数值分析与实验研究[J]. 工程热物理学报, 2011, 32(4): 589-892.
Hu Ya-tao, Xue Yong-fei, Chen Jun, et al. Numerical simulation and experimental study of vehicle aerodynamic noise from open sunroof[J]. Journal of Engineering Thermophysics, 2011, 32(4): 589-592.
[6] Kook H S, Shin S R, Cho J, et al. Development of an active deflector system for sunroof buffeting noise control[J]. Journal of Vibration and Control, 2014, 20(16): 2521-2529.
[7] Rahman M M, Toufique H A.B.M, Sadrul I A.K.M, et al. Computation of transonic internal flow around a biconvex airfoil with cavity[J]. Journal of Mechanical Science and Technology, 2015, 29(6): 2415-2421.
[8] 周益. 汽车天窗噪声的控制和CFD仿真研究[D]. 合肥: 合肥工业大学, 2012.
Zhou Yi. Control of automobile sunroof of noise and CFD simulation[D]. Hefei: Hefei University of Technology, 2012.
[9] 黄磊. 汽车天窗风振问题的研究[J]. 噪声与振动控制, 2009, 29(2): 38-41.
Huang Lei. Study of sunroof buffeting noise of automobiles due to wind load[J]. Noise and Vibration Control, 2009, 29(2): 38-41.
[10] 康宁,王晓春. 天窗对轿车内部流场及气动噪声的影响[J]. 航空动力学报, 2010, 25(2): 354-358.
Kang Ning, Wang Xiao-chun. Influence of sunroof on flow field and aerodynamic noise inside the passenger compartment of the car[J]. Journal of Aerospace Power, 2010, 25(2): 354-358.
[11] 汪怡平,王文龙,杨雪,等. 超低马赫数空腔流诱发自激振荡数值模拟[J]. 中国公路学报, 2015, 28(7): 121-126.
Wang Yi-ping, Wang Wen-long, Yang Xue, et al. Numerical simulation for self-oscillation evoked by cavity flow at ultra low mach numbers[J]. China Journal of Highway and Transport, 2015, 28(7): 121-126.
[12] 熊万里,侯志泉,吕浪,等. 基于动网格模型的液体动静压轴承刚度阻尼计算方法[J]. 机械工程学报, 2012, 48(23): 118-126.
Xiong Wan-li, Hou Zhi-quan, Lü Lang, et al. Method for calculating stiffness and damping coefficients of hybrid bearings based on dynamic mesh model[J]. Journal of Mechanical Engineering, 2012, 48(23): 118-126.
[13] 艾辉林,陈艾荣. 基于ALE格式的动网格方法数值模拟断面气动导数[J]. 工程力学, 2009, 26(7): 211-215.
Ai Hui-lin, Chen Ai-rong. Moving grids method simulation of sections’ aerodynamic derivatives based on ALE format[J]. Engineering Mechanics, 2009, 26(7): 211-215.
[14] 黄莎,杨明智,李志伟,等. 高速列车转向架部位气动噪声数值模拟及降噪研究[J]. 中南大学学报: 自然科学版, 2011, 42(12): 3899-3904.
Huang Sha, Yang Ming-zhi, Li Zhi-wei, et al. Aerodynamic noise numerical simulation and noise reduction of high speed train bogie section[J]. Journal of Central South University: Science and Technology Edition, 2011, 42(12): 3899-3904.
[15] Mechel F P. Formulas of Acoustics[M]. Berlin Heidelberg: Springer-Verlag Press, 2008.
[16] 朱晖,杨志刚,谭鹏,等. 流体仿真平台对汽车外流场仿真能力的对比研究[J]. 汽车工程, 2016, 38(2): 163-167.
Zhu Hui, Yang Zhi-gang, Tan Peng, et al. A comparative study on the simulation capability of fluid simulation platforms on exterior flow field around vehicle[J]. Automotive Engineering, 2016, 38(2): 163-167.
[17] 徐成宇,钱志辉,刘庆萍,等. 基于长耳鸮翼前缘的仿生耦合翼型气动特性[J]. 吉林大学学报: 工学版, 2010, 40(1): 108-112.
Xu Cheng-yu, Qian Zhi-hui, Liu Qing-ping, et al. Aerodynamic performance of bionic coupled foils based on leading edge of long-eared owl wing[J]. Journal of Jilin University: Engineering and Technology Edition, 2010, 40(1): 108-112.
[18] 左曙光,韦开君,吴旭东,等. 采用Kriging模型的离心压缩机叶轮多目标参数优化[J]. 农业工程学报, 2016, 32(2): 77-83.
Zuo Shu-guang, Kei Kai-jun, Wu Xu-dong, et al. Multi-objective parameter optimization of centrifugal compressor impeller with Kriging model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(2): 77-83.
[19] 赵德建,王延奎,周平,等. 基于多岛遗传算法的二维翼型吸气减阻优化[J]. 北京航空航天大学学报: 自然科学版, 2015, 41(5): 941-946.
Zhao De-jian, Wang Yan-kui, Zhou Ping, et al. Optimization of drag reduction by suction using multi-island genetic algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics: Science and Technology Edition, 2015, 41(5): 941-946.
[20] 杨博. 汽车外部空气动力噪声研究[D]. 长春: 吉林大学, 2008.
Yang Bo. Research on automobile exterior aerodynamic noise[D]. Changchun: Jilin University, 2008.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}