在试验室或实际工程中,当传统接触式传感器随着结构或模型的失效破坏而损坏时,会导致结构大变形全程动态测量的失败。为解决此问题,本文基于平行双目立体视觉模型,结合数字图像相关方法及大范围有效匹配算法(ELAS)实现结构三维变形全程动态测量。基于上述原理,本文选用MATLAB平台编译立体视觉三维变形测量软件,并使用集成的立体视觉测量系统完成不同加速度峰值El Centro地震动作用下三层框架模型的振动台试验。试验结果表明,在小变形阶段,本文方法测得的位移时程曲线与位移计数据吻合较好,充分证明本文方法的有效性;在结构倒塌阶段,位移计移走,本文方法独立测得三层框架模型倒塌的全程位移曲线,验证本文方法用于结构倒塌全程监测的可行性。
Abstract
In laboratory or actual engineering applications, traditional contact sensors are usually destroyed along with structure damage. To deal with this problem, on the parallel stereovision model, the efficient largescale stereo matching algorithm (ELAS) was combined with the DIC method to measure structural vibration response. MATLAB was chosen to compile the stereovision 3D deformation measurement software based on the proposed algorithm, and a threestory frame model subjected to El Centro earthquake wave at different peak acceleration was measured by the stereovision system in this work. Experiment results show the proposed method has a good agreement with LVDT in time history curves during the stage of small deformations, and this testifies the effectiveness of the proposed method. LVDT sensors were taken away during the collapse stage, the collapse curves of a threefloor frame model were obtained only by the proposed method, and this indicates the capability of the proposed stereovision approach monitoring collapse of structure.
关键词
立体视觉 /
数字图像相关 /
倒塌 /
监测 /
三维变形
{{custom_keyword}} /
Key words
stereovision /
DIC /
collapse /
monitoring /
3D deformation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 何庆锋, 刘义仁, 周超等. 冲击作用下钢筋混凝土框架抗连续倒塌数值模拟[J]. 振动与冲击, 2016, 35(23): 56-64.
He Qingfeng, Liu Yiren, Zhou Chao, et al. Numerical simulationfor progressive collapse of a reinforced concrete frame under impact load [J]. Journal of Vibration and Shock, 2016, 35(23): 56-64. (in Chinese)
[2] 薛志宏. GNSS 动态变形测量关键技术研究[D]. 解放军信息工程大学博士学位论文, 2012.
Xue Zhihong. A study of key technology for dynamic deformation monitoring using GNSS[D]. Ph.D. Dissertation of PLA Information Engineering University, 2012. (in Chinese).
[3] 冯文灏. 近景摄影测量—物体外形与运动状态的摄影法测定[M]. 武汉: 武汉大学出版社, 2002.
Feng Wenhao. Close-range photogrammetry measurement for object shape and motion state [M]. Wuhan: WUHAN University Press, 2002. (in Chinese)
[4] Luo P F, Chao YJ, Michael A S, et al. Accurate measurement of three-dimensional displacement in deformable bodies using computer vision[J]. Experimental Mechanics, 1993, 33(2): 123-132.
[5] 张旭萍,汪家其,张益昕等. 大尺度三维几何尺寸立体视觉测量系统实现,光学学报,2012,32(3):0315002.
Zhang Xuping, Wang Jiaqi, Zhang Yixin, et al. Large scale three-dimensional sterov visio geometric measurement system [J], Acta Optica Sinica, 2012, 32(3): 0315002.
[6] Chang C C, Ji Y F. Flexible videogrammetric technique for three-Dimensional structural vibration measurement [J]. Journal of Engineering Mechanics, 2007, 133(6): 656-664.
[7] Michael J, Ginnis M, Brain S. 3-D digital image correlation- an underused asset for structural testing [C]. Structures Congress of ASCE, 2012, 1958-1969.
[8] Shan B H, Zheng S J, Ou J P. Free vibration monitoring experiment of a stayed-cable model based on stereovision. Measurement[J]. 2015, 76(12): 228-239.
[9] 张广军. 视觉测量[M]. 北京: 科学出版社, 2008: 134-136. Zhang Guanjun. Vision Measurement [M]. Beijing: Science Press, 2008: 134-136.(in Chinese)
[10] Zhang Z Y. A Flexible New Technique for Camera Calibration[J]. IEEE Trans. On Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334.
[11] Andreas G, Martin R, Raquel U. Efficeint large-scale stereo matching[C], Computer Vision – ACCV 2010, Lecture Notes in Computer Science, 2011, 6492: 25-38.
[12] Michael A S, Stephen R M, Jeffrey D H, et al. Advances in two-dimensional and three-dimensional computer vision [J]. Topics in Applied Physics, 2000, 77(1): 323-372.
[13] 叶南. 基于机器视觉的板料成形性能分析关键技术及系统实现[D]. 南京航空航天大学, 2010.
Ye Nan. Key techniques and systems of sheet Metal formability analysis based on machine vision [D]. Ph. D. dissertation of Nanjing University of Aeronautics and Astronautics, 2010.(in Chinese)
[14] Bruck H A, McNeil S R, Sutton M A, et al. Digital image correlation using Newton-Raphson method of partial differential correlation [J]. Experimental Mechanics, 1989, 29(3): 261-267.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}