针对大型土木工程结构提出一种协调分散控制策略。该策略在分散化控制基础上,通过设置一个不受子系统影响的高层协调系统来加强各子控制器对结构的控制能力。首先,基于线性矩阵不等式方法和PID控制理论,推导了能够保证协调系统渐进稳定及系统性能上届最小的最优保性能PID协调控制器。在此基础上,结合极值控制原理,以结构控制效果整体最优为目标设计各子控制器,进而得到协调分散控制系统的反馈控制律。同时利用模拟退火算法对各子控制器进行优化设计。对ASCE 9层Benchmark模型分别进行集中控制、全维分散控制、部分分散控制和协调分散控制优化设计及仿真分析。结果表明,不同地震激励下,协调分散控制较集中控制与分散控制能更好地抑制结构的振动响应,协调控制器与子控制器协同控制下能保障各子系统作动器均处于最大功效工作状态。
Abstract
A coordinated decentralized control strategy was proposed for large civil engineering structures. This strategy can enhance the control ability of each subcontroller by setting up a high level coordination system which is not affected by the subsystem on the basis of decentralized control. The linear matrix inequality (LMI) approach and the PID control theory were employed to design the stable optimal guaranteed cost PID coordination controller. Combined with the extremum control principle, the subcontroller was designed with the goal of whole structural control effect. And then the state feedback control law of coordinated decentralized control system (CDCS) was established. Meanwhile, the simulated annealing algorithm was used to optimize the design of each subcontroller. The ASCE 9story benchmark building was selected as a numerical example to evaluate the control performances of centralized control, fully decentralized control, the partially decentralized control, and coordinated decentralized control. Numerical simulation results indicate that coordinated decentralized control can perform up to a superior control performance when comparing with traditional centralized control and decentralized control under different seismic excitations, and the maximum operating efficiency of the actuators of each subsystem were guaranteed in the condition that coordinated controller and subcontroller work together.
Key words
active control, coordinated decentralized control, decentralized control, guaranteed cost PID, LMI /
simulated annealing
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 席裕庚.动态大系统方法导论[M].北京:国防工业出版社,1988:160-161.
Xi Yu-geng. Introduction of large scale dynamic systems [M]. Bei Jing : National Defence of Industry Press, 1988:60-61. (in Chinese)
[2] Lynch J P, Law K H. Decentralized control techniques for large-scale civil structural systems[C]//Proc. of the 20th Int. Modal Analysis Conference (IMAC XX). 2002.
[3] Xu B, Wu Z S, Yokoyama K. Neural networks for decentralized control of cable-stayed bridge[J]. Journal of Bridge Engineering, 2003, 8(4): 229-236.
[4] Monajemi-Nezhad S, Rofooei F R. Decentralized sliding mode control of multistory buildings[J]. The Structural Design of Tall and Special Buildings, 2007, 16(2): 181-204.
[5] Loh C H, Chang C M. Application of centralized and decentralized control to building structure: analytical study[J]. Journal of Engineering Mechanics, 2008, 134(11): 970-982.
[6] 李宏男, 李瀛, 李钢. 地震作用下建筑结构的分散控制研究[J]. 土木工程学报, 2008, 41(9): 27―33.
Li Hongnan, Li Ying, Li Gang. Decentralized control of structures under earthquakes [J]. China Civil Engineering Journal, 2008, 41(9): 27-33. (in Chinese)
[7] 宁响亮, 谭平, 周福霖. 公路桥梁振动控制的变论域自适应模糊控制算法[J]. 振动工程学报, 2009, 22(3):262-267.
NING Xiang-liang, TAN Ping, ZHOU Fu-lin. Vibration control of highway bridge using variable universe adaptive fuzzy control algorithm[J]. Journal of Vibration Engineering, 2009, 22(3):262-267.
[8] 汪权, 王建国, 裴阳阳. 地震作用下高层建筑结构的分散模糊迭代学习控制研究[J]. 计算力学学报, 2012, 29(5): 681-686.
Wang Quan, Wang Jian-guo, Pei Yang-yang. Decentralized fuzzy iterative learning control of tall buildings under earthquakes [J]. Chinese Journal of Computational mechanics, 2012, 29(5): 681-686.
[9] 蒋扬, 周星德, 王玉. 建筑结构鲁棒分散控制方法研究[J]. 振动与冲击, 2012, 31(6): 37-41.
Jang Yang, Zhou Xing-de, Wang Yu. A robust decentranzed control method for architectural structures [J]. Journal of Vibration and Shock, 2012, 31(6): 37-41.
[10] 雷鹰, 伍德挺, 刘中华. 一种适用于大型工程结构的分散振动控制方法[J]. 振动工程学报, 2012, 25(4): 411-417.
LEI Ying , WU De-ting , LIU Zhong-hua. A decentralized vibration control algorithm for large-scale engineering structures[J]. Journal of Vibration Engineering, 2012,25(4):411:417.
[11] Wang Y. Wireless sensing and decentralized control for civil structures: theory and implementation[D]. Stanford University, 2007.
[12] 俞立. 鲁棒控制: 线性矩阵不等式处理方法[M]. 淸华大学出版社, 2002:8-9.
Yu Li. Robust control: linear matrix inequality approach [M]. Tsinghua University Press,2002: 8-9. (in Chinese)
[13] Kirkpatrick S,, Gelatt C D, Vecchi M P. Optimization by Simulated Annealing[J]. Science, 1983, 220(4598):671-680.
[14] Ohtori Y, Christenson R E, Spencer Jr B F, et al. Benchmark control problems for seismically excited nonlinear buildings[J]. Journal of Engineering Mechanics, 2004, 130(4): 366-385.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}