PMT水下内爆冲击波强度与传播特性研究

金 键1,侯海量1,陈鹏宇1,朱 锡1,吴林杰1,何 苗2,王天穹1

振动与冲击 ›› 2018, Vol. 37 ›› Issue (13) : 100-104.

PDF(2176 KB)
PDF(2176 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (13) : 100-104.
论文

PMT水下内爆冲击波强度与传播特性研究

  • 金 键1,侯海量1,陈鹏宇1,朱 锡1,吴林杰1,何 苗2,王天穹1
作者信息 +

Shock wave intensity and propagation features of a PMT’s underwater implosion

  • JIN Jian1, HOU Hailiang1, CHEN Pengyu1, ZU Xi1, WU Linjie1, HE Miao2, WANG Tianqiong1
Author information +
文章历史 +

摘要

为研究光电倍增管(PMT)水下内爆后产生的冲击波强度及其传播特性,首先以气泡动力学、气泡破裂动力学理论为基础分析了球形气泡溃灭时长与气泡破裂回弹阶段冲击波传播特性,指出了真空容器水下内爆与气泡溃灭物理过程的相似性和特殊性。建立了水下气泡溃灭数值仿真计算模型,通过与文献实验结果和理论结果的对比验证了数值计算方法的可行性。最后以实际工作环境为基础对PMT水下内爆过程进行了数值模拟,分析了PMT外形尺寸对冲击波传播特性的影响,确定了PMT水下内爆的冲击波强度,为PMT防爆工作提供了针对性的参考。

Abstract

Shock wave intensity and propagation features of a photo-multiplier tube (PMT)’s underwater implosion were studied. Firstly, based on the theory of bubble dynamics and bubble rupture dynamics, a spherical bubble collapse’s time and shock wave propagation features in bubble burst rebound stage were analyzed, it was found that the physical process of a vacuum vessel’s underwater implosion is similar to that of an underwater bubble collapse. Secondly, a numerical simulation model for an underwater bubble collapse was built. Its feasibility was verified through comparing the results of simulation with this model with those of tests and theoretical calculation for some examples published in literature. Finally, the numerical simulation was conducted for a PMT’s underwater implosion based on the actual working environment. The influence of a PMT’s external shape size on the shock wave propagation features was analyzed, the shock wave intensity of PMT’s underwater implosion was determined. The results provided a reference for preventing PMT implosion.

关键词

PMT / 水下内爆 / 冲击波 / 数值仿真

Key words

 PMT / underwater implosion / shock wave / numerical simulation

引用本文

导出引用
金 键1,侯海量1,陈鹏宇1,朱 锡1,吴林杰1,何 苗2,王天穹1. PMT水下内爆冲击波强度与传播特性研究[J]. 振动与冲击, 2018, 37(13): 100-104
JIN Jian1, HOU Hailiang1, CHEN Pengyu1, ZU Xi1, WU Linjie1, HE Miao2,WANG Tianqiong1. Shock wave intensity and propagation features of a PMT’s underwater implosion[J]. Journal of Vibration and Shock, 2018, 37(13): 100-104

参考文献

[1] 王贻芳. 大亚湾反应堆中微子实验[J].科学,2015,64(3):5-8.
Wang Y F. Daya Bay reactor neutrino experiments[J]. Science,2015, 64(3):5-8.
[2] 曹俊. 大亚湾与江门中微子实验[J]. 中国科学:物理学 力学 天文学.2014,44:1025-1040.
Cao J. Daya Bay and jiangmen underground Neutrino observatory(JUNO)neutrino experiments[J]. Sci sin-Phys Mech Astron. 2014, 44(2):1025-1040.
[3] Fukuda S, Fukuda Y, Hayakawa T, et al. The Super Kamiokande detector[J]. Nuclear Instruments and Methods in Physics Research A, 2003, 501:418:-462.
[4]  Ling J J,Bishai M,Diwan M,et al. Implosion chain reaction mitigation in underwater assemblies of photomultiplier tubes[J]. Nuclear Instruments and Methods in Physics Research A, 2013, 729:491-499.
[5] Brennen C E. Cavitation and bubble dynamics[M]. Cambridge:Cambridge University Press,2013.
[6]  Rayleigh L. On the pressure developed in a liquid during the collapse of a spherical cavity[J]. Philosophical Magazine Series 6,1917(34):94-98.
[7]  Plesset M S. The dynamics of cavitation bubble[J]. Journal of Applied Mechanics. 1949(16):813-821.
[8] Ivany R D, Hammitt F G. Cavitation bubble collapse in viscous compressible liquids-numerical analysis[J]. Journal of Applied Mechanics. 1965(87):977-985.
[9]  Hicking R, Plesset M S. Collapse and rebound of a spherical bubble in water[J]. The physics of fluids. 1964(7):7-14.
[10] Turner S E. Underwater implosion of glass spheres[J].The Journal of the Acoustical Society of Americal,2007,121(2):844-852.
[11] Cole H R.Underwater explosion[M]. Princeton,NEW Jersey:Princeton University Press,1948.

PDF(2176 KB)

Accesses

Citation

Detail

段落导航
相关文章

/