三稳态Van der Pol系统随机P分岔电路实验研究

吴志强, 王文博, 张祥云

振动与冲击 ›› 2018, Vol. 37 ›› Issue (13) : 111-116.

PDF(2915 KB)
PDF(2915 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (13) : 111-116.
论文

三稳态Van der Pol系统随机P分岔电路实验研究

  • 吴志强, 王文博, 张祥云
作者信息 +

A tri-stable Van der Pol system’s stochastic P-bifurcation circuit experiment

  • WU Zhi-qiang    WANG Wen-bo   ZHANG Xiang-yun
Author information +
文章历史 +

摘要

设计了高斯白噪声激励下的三稳态Van der Pol电路随机动力学实验系统,并从响应的时间历程图、相图、稳态概率密度图三方面,实验研究了高斯白噪声强度变化对系统三稳态切换行为的影响。结果表明,随着激励强度增加,不同吸引子间的切换频率显著改变,并且概率密度曲线上的峰之间相对高低发生变化,实验数据点在相图上的分布逐渐趋于均衡化,概率密度曲线峰的数目发生变化,通过与理论结果对比,定性验证了随机P分岔现象的发生。

Abstract

A Van der Pol circuit system with one stable equilibrium point and two stable limit cycles under the excitation of Gaussian white noise was designed for stochastic dynamics experiment. The effects of Gaussian white noise intensity change on the switching behavior among three steady states of the system was experimentally studied from three aspects including  response amplitude time history diagram, phase diagram, and steady state probability density diagram. The results shown that with increase in excitation intensity, the switching frequency among different attractors varies significantly; the relative height between peaks and the peak number of the probability density curve change; Moreover, the distribution of experiment data points in the phase diagram gradually tends to equalization; compared with the theoretical results, the occurrence of the stochastic P-bifurcation phenomenon was qualitatively verified.

关键词

三稳态VDP电路 / 高斯白噪声 / 稳态切换 / 随机P分岔

Key words

tri-stable Van der Pol circuit / Gaussian white noise / steady-state switching / stochastic P-bifurcation

引用本文

导出引用
吴志强, 王文博, 张祥云 . 三稳态Van der Pol系统随机P分岔电路实验研究[J]. 振动与冲击, 2018, 37(13): 111-116
WU Zhi-qiang WANG Wen-bo ZHANG Xiang-yun. A tri-stable Van der Pol system’s stochastic P-bifurcation circuit experiment[J]. Journal of Vibration and Shock, 2018, 37(13): 111-116

参考文献

[1] Javed U, Abdelkefi A, Akhtar I. An improved stability characterization for aeroelastic energy harvesting applications [J]. Communications in Nonlinear Science and Numerical Simulation, 2016, 36: 252-265.
[2]  Dimitriadis G, Li J. Bifurcation behavior of airfoil undergoing stall flutter oscillations in low-speed wind tunnel [J]. Aiaa Journal, 2009, 47(47):2577-2596.
[3]  Lee B H K, Liu L, Chung K W. Airfoil motion in subsonic flow with strong cubic nonlinear restoring forces [J]. Journal of Sound and Vibration, 2005: 699-717.
[4] Iwnicki S. Handbook of Railway Vehicle Dynamics [M].  CRC/Taylor & Francis, 2006.
[5] Païdoussis M P, Price S J, De Langre E. Fluid-structure interactions: Cross-flow-induced instabilities [M]. Cambridge University Press, 2010.
[6] 顾仁财, 许勇, 郝孟丽, 等. Lévy稳定噪声激励下的duffing-van der pol振子的随机分岔 [J]. 物理学报, 2011, 60(06): 157-161.
GU Ren-cai, XU Yong, HAO Meng-li, et al. Stochastic bifurcations in Duffing-van der Pol oscillator with Lévy stable noise [J]. Acta Physica Sinica, 2011, 60(06): 157-161.
[7] XU Yong, GU Ren-cai, ZHANG Hui-qing, et al. Stochastic bifurcations in a bistable Duffing-van der pol oscillator with colored noise [J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2011, 83(5): 56211-56215.
[8] Zakharova A, Vadivasova T, Anishchenko V, et al. Stochastic bifurcations and coherencelike resonance in a self-sustained bistable noisy oscillator [J]. Physical Review E, 2010, 81(1): 95-102.
 [9] 吴志强, 郝颖. 随机激励van der pol-duffing方程三峰p-分岔 [J]. 中国科学:物理学 力学 天文学, 2013, 43(04): 524-529.
WU Zhi-qiang, HAO Ying. Three-peak P-bifurcations in stochastically excited van der pol- duffing oscillator [J]. Sci Sin-Phys Mech Astron, 2013, 43(04): 524-529.
[10] 郝颖, 吴志强. 三稳态van der pol-duffng振子的随机p分岔 [J]. 力学学报, 2013, 45(02): 257-264.
HAO Ying, WU Zhi-qiang. Stochastic P-bifurcation of tri-stable van der pol--duffing oscillator [J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(02): 257-264.
[11] Zakharova A, Feoktistov A, Vadivasova T, Schöll E. Coherence resonance and stochastic synchronization in a nonlinear circuit near a subcritical Hopf bifurcation [J]. The European Physical Journal Special Topics, 2013, 222(10): 2481-2495.
[12] Semenov V, Feoktistov A, Vadivasova T, et al. Time-delayed feedback control of coherence resonance near subcritical Hopf bifurcation: Theory versus experiment [J]. Chaos, 2014, 25(3):807-813.
[13] 吴志强, 张宝强. 基于9阶van der pol方程的三稳态电路设计及实现 [J]. 天津大学学报(自然科学与工程技术版), 2016(07): 709-715.
 WU Zhi-qiang, ZHANG Bao-qiang. Design and implementation of tri-stable circuit based on the ninth-order van der pol equation [J]. Journal of Tianjin University (Science and Technology), 2016(07): 709-715.
[14] 朱位秋. 随机振动(朱位秋) [M]. 北京: 科学出版社, 北京, 1998.
[15] 张肃文. 高频电子线路-第5版 [M]. 高等教育出版社, 北京, 2009.

PDF(2915 KB)

352

Accesses

0

Citation

Detail

段落导航
相关文章

/