风轮振动行为与尾迹的关联性研究

李佩林 1,马剑龙 1,2,汪建文 1,2,张彦奇 1,姜勇 1,吕文春 1,3

振动与冲击 ›› 2018, Vol. 37 ›› Issue (13) : 117-122.

PDF(1473 KB)
PDF(1473 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (13) : 117-122.
论文

风轮振动行为与尾迹的关联性研究

  • 李佩林 1,马剑龙 1,2,汪建文 1,2,张彦奇 1,姜勇 1,吕文春 1,3
作者信息 +

Relevance between wind wheel vibration and wake

  • LI Pei-lin1,MA Jian-long1,2,WANG Jian-wen1,2,ZHANG Yan-qi1,JIANG Yong1,Lv Wen-chun1,3
Author information +
文章历史 +

摘要

利用PULSE19装置和TR-PIV装置构建了发电机、塔架加速度与风轮尾迹发展的同步监测系统,针对直径1.4m的小型水平轴风力机振动特性及叶尖附近湍流涡旋进行了测试与分析,证实了风轮振动与尾流发展之间存在密切关联性。由风轮旋转形成的一次谐波能量值最高。对比加速度与尾流的频谱图,发现加速度峰值与尾流能量峰值对应的特征频率相近,风轮振动的能量传递到了流场中。风力机发生偏航后,风轮旋转三倍频与尾流一次谐波间能量传递受阻,偏航角小于10°时,尾流能量值对振动加速度值的变化较敏感,而随着偏航角的增加,两者之间的关联性减小。

Abstract

A synchronous monitoring system for vibration acceleration of a wind driven generator, hat of its pylon, and a wind wheel wake was constructed using the devices of PULSE19 and TR-PIV. The vibration features and turbulent vortex near blade tip of a 1.4m-diameter horizontal axis wind turbine were measured and analyzed, it was shown that there is a close relation between wind wheel vibration and wake; the energy of the first harmonic vibration component caused due to the wind wheel rotating is the highest. Comparing frequency spectra of wind wheel’s vibration acceleration and wake, it was found that the characteristic frequency of acceleration peak and that of wake energy peak are very close,so the wind wheel vibration energy is transmitted into the flow field; after the wind turbine has a yaw, the energy transfer between the third harmonic vibration component due to wind wheel rotating and the first harmonic component of the wake is blocked; when yaw angle is less than 10°, the wake energy value is more sensitive to the change of wind wheel vibration acceleration; with increase in yaw angle, the relevance between them decreases.

关键词

尾迹 / 振动加速度 / 偏航 / 频谱响应

Key words

 wake / vibration acceleration / yaw / spectral response

引用本文

导出引用
李佩林 1,马剑龙 1,2,汪建文 1,2,张彦奇 1,姜勇 1,吕文春 1,3. 风轮振动行为与尾迹的关联性研究[J]. 振动与冲击, 2018, 37(13): 117-122
LI Pei-lin1,MA Jian-long1,2,WANG Jian-wen1,2,ZHANG Yan-qi1,JIANG Yong1,Lv Wen-chun1,3. Relevance between wind wheel vibration and wake[J]. Journal of Vibration and Shock, 2018, 37(13): 117-122

参考文献

[1] Hsu M C, Bazilevs Y. Fluid---structure interaction modeling of wind turbines: simulating the full machine[J]. Computational Mechanics, 2012, 50(6):821-833.
[2] Bazilevs Y, Takizawa K, Tezduyar T E, et al. Aerodynamic and FSI Analysis of Wind Turbines with the ALE-VMS and ST-VMS Methods[J]. Archives of Computational Methods in Engineering, 2014, 21(4):359-398.
[3] Hu H, Zhang S R. Dynamic Analysis of Tension Leg Platform for Offshore Wind Turbine Support as Fluid-Structure Interaction[J]. China Ocean Engineering (English Edition), 2011, 25(1):123-131.
[4] Kim K C, Kim Y K, Ji H S, et al. Aerodynamic Characteristics of Horizontal Axis Wind Turbine With Archimedes Spiral Blade[C]// ASME 2013 International Mechanical Engineering Congress and Exposition. 2013:V07BT08A070-V07BT08A070.
[5] Maldonado V, Farnsworth J, Gressick W, et al. Active control of flow separation and structural vibrations of wind turbine blades[J]. Wind Energy, 2010, 13(2‐3): 221-237.
[6] Bekhti A, Guerri O, Rezoug T. Numerical simulation of fluid flow around free vibrating wind turbine airfoil[J]. 2015, 1648(1):387-403.
[7] Howland M F, Bossuyt J, Martinez-Tossas L A, et al. Wake Structure of Wind Turbines in Yaw under Uniform Inflow Conditions[J]. arXiv preprint arXiv:1603.06632, 2016.
[8] Campbell R, Jayaraman B, Lavely A, et al. Fluid-Structure Interaction Simulations of a Parked Wind Turbine Rotor Blade under Steady and Unsteady Inflow Conditions[C]//APS Meeting Abstracts. 2013, 1: 24004.
[9] Viré A, Xiang J, Piggott M, et al. Numerical Modelling of Fluid-structure Interactions for Floating Wind Turbine Foundations[C]//The Twenty-third International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers, 2013.377-382.
[10] Dose B, Herraez I, Peinke J. Fluid-structure coupling for wind turbine blade analysis using OpenFOAM[C]//APS Meeting Abstracts. 2015.24-26.
[11] Sessarego M, Ramosgarcía N, Shen W Z. Development of a Fast Fluid-Structure Coupling Technique for Wind Turbine Computations[J]. Journal of Power & Energy Engineering, 2015, 03(7):1-6.
[12] Hsu M C. Fluid-Structure Interaction Analysis of Wind Turbines[J]. Dissertations & Theses - Gradworks, 2012, 179-181.
[13] Hamdoon F. Aeroelastic Behavior of a Wind Turbine Blade by a Fluid -Structure Interaction Analysis[J]. Al-Khawarizmi Engineering Journal, 2013, 9(3).
[14] Järpner C, Norlin J. Fluid structure interaction on wind turbine blades[J]. 2012, 66-83.
[15] Liu X, Lu C, Liang S, et al. Influence of the Vibration of Large-scale Wind Turbine Blade on the Aerodynamic Load[J]. Energy Procedia, 2015, 75(July):873-879.
[16] 姚世刚, 戴丽萍, 康顺. 风力机叶片气动性能及流固耦合分析[J]. 工程热物理学报, 2016, V37(5):988-992.
YAO Shi-Gang, DAI Li-Ping ,KANG Shun. Aerodynamic Performance and Fluid-Structure Coupling Analysis of Wind Turbine Blades[J]. Journal of Engineering Thermophysics, 2016, V37(5):988-992
[17] 陈文朴, 李春, 叶舟,等. 基于流固耦合的风力机叶片结构稳定性分析[J]. 水资源与水工程学报, 2016, 27(4):179-183.
CHEN Wenpua,LI Chuna,YE Zhoua,et.Stability analysis of blade structure of wind turbine based on fluid一solid coupling[J]. Journal of water resources and water engineering, 2016, 27(4):179-183.
[18] Lee Y J, Jhan Y T, Chung C H. Fluid–structure interaction of FRP wind turbine blades under aerodynamic effect[J]. Composites Part B Engineering, 2012, 43(5):2180-2191.
[19] 柯世堂,余玮,王同光.基于大涡模拟考虑叶片停机位置大型风力机风振响应分析[J].振动与冲击,2017,36(7):92-98.
Ke Shitang, Yu Wei, Wang Tong guang. Wind-included vibration responses analysis for a large wind turbine blade-tower system based on large eddy simulation[J]. Journal of Vibration and Shock,2017,36(7):92-98.
[20] 马剑龙,汪建文,魏海娇,董波. 风轮固有振动频率随工况变化的响应特性[J]. 振动.测试与诊断,2014,(03):508-515+592.
Ma Jianlong, Wang Jianwen, Wei Hai Jiao, Dong Bo. Research on Response Characteristic of Working Condition Natural Frequency Changing with of Wind Wheel[J]. Journal of Vibration,Measurement & Diagnosis, 2014,(03):508-515+592.
[21] 吕文春,马剑龙,汪建文,李佩林,张彦奇. 风轮典型振型动态频率的间接测试和识别方法[J]. 农业工程学报,2016,(23):233-238.
Lv Wenchun, Ma Jianlong, Wang Jianwen, Li Peilin, Zhang Yanqi. Indirect test and identification method of dynamic frequencies of typical vibrations on wind wheel[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,(23):233-238.

PDF(1473 KB)

376

Accesses

0

Citation

Detail

段落导航
相关文章

/