多边形钢管约束混凝土靶抗侵彻性能试验研究

蒙朝美1, 2,宋殿义1,蒋志刚1,刘飞1,谭清华1

振动与冲击 ›› 2018, Vol. 37 ›› Issue (13) : 14-19.

PDF(1835 KB)
PDF(1835 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (13) : 14-19.
论文

多边形钢管约束混凝土靶抗侵彻性能试验研究

  • 蒙朝美1, 2,宋殿义1,蒋志刚1,刘飞1,谭清华1
作者信息 +

Tests for anti-penetration performance of polygonal steel tube-confined concrete targets

  • MENG Chaomei 1, 2, SONG Dianyi1, JIANG Zhigang1, LIU Fei1, TAN Qinghua1
Author information +
文章历史 +

摘要

钢管约束混凝土的抗侵彻性能优于普通混凝土。为了研究钢管形状对抗侵彻性能的影响,进行了12.7mm硬芯枪弹(撞击速度600m/s-830m/s)侵彻正六边形、正方形和圆形钢管约束混凝土靶试验,得到了靶的破坏模式和主要损伤参数。结果表明:正六边形钢管约束混凝土靶的抗侵彻性能优于圆形和正方形钢管约束混凝土靶,含钢率为9.75%时,正六边形靶与圆形靶相比,侵彻深度可减小约11%,侵彻阻力增大约11%;多边形(正六边形和正方形)钢管约束混凝土靶的破坏模式与圆形钢管约束混凝土靶有所不同,其漏斗坑表面裂纹主要分布在对角线附近,核心混凝土侧面裂纹多而细,但无明显主裂纹;多边形钢管约束混凝土靶的侵彻深度随撞击速度近似线性增大,且偏心率小于0.35时,弹着点偏心距对侵彻深度的影响较小。

Abstract

Steel tube-confined concrete (STCC)’s anti-penetration performance is superior to ordinary concrete’s. In order to study effects of steel-tube’s shape on STCC’s anti-penetration performance, tests for 12.7mm hard core bullets with a speed of 600m/s-830m/s penetrating hexagonal, square and circular STCC targets were conducted to detect their failure modes and main damage parameters. The results showed that hexagonal STCC targets’ anti-penetration performance is superior to circular and square STCC targets’; when the steel-containing ratio is 9.75%, the depth of penetration (DOP) of hexagonal STCC targets decreases by 11% compared with circular STCC targets, and the former’s penetration resistance increases by 11%; the failure modes of polygonal (hexagonal and square) STCC targets are different from those of circular STCC targets, the former’s cracks at surface of funnel pits are mainly distributed nearby their diagonals, there are a lots of small cracks at sides of core concrete but no obvious major cracks; polygonal STCC targets’ DOPs increase almost linearly with increase in impact velocity; the impact point eccentricity has little effect on DOP when the ratio of eccentricity is less than 0.35.

关键词

约束混凝土 / 侵彻试验 / 硬芯枪弹 / 破坏模式 / 侵彻阻力

Key words

confined concrete / penetration test / hard core bullet / failure modes / penetration resistance

引用本文

导出引用
蒙朝美1, 2,宋殿义1,蒋志刚1,刘飞1,谭清华1. 多边形钢管约束混凝土靶抗侵彻性能试验研究[J]. 振动与冲击, 2018, 37(13): 14-19
MENG Chaomei 1, 2, SONG Dianyi1, JIANG Zhigang1, LIU Fei1, TAN Qinghua1. Tests for anti-penetration performance of polygonal steel tube-confined concrete targets[J]. Journal of Vibration and Shock, 2018, 37(13): 14-19

参考文献

[1] 闫焕敏, 张志刚, 葛涛等. 防护工程中遮弹层的研究进展[J]. 兵器材料科学与工程, 2016, 39(1): 127-132.
Yan HM, Zhang ZG, Ge T, et al. Research progress of bursting layer in protection engineering [J]. Ordnance Material Science and Engineering, 2016, 39(1): 127-132.
[2] 程怡豪, 王明洋, 施存程等. 大范围着速下混凝土靶抗冲击试验研究综述 [J]. 浙江大学学报(工学版), 2015, 49(4): 616-637.
Cheng YH, Wang MY, Shi CC, et al. Review of experimental ivestigation of concrete target to resist missile impact in large velocity range [J]. Journal of Zhejiang University (Engineering Science), 2015, 49(4): 616-637.
[3] 张伟, 穆忠诚, 肖新科. 骨料粒径对混凝土靶体抗高速破片侵彻影响的实验研究 [J]. 兵工学报, 2012, 33(8): 1009-1015.
Zhang W, Mu ZC, Xiao XK. Experimental study on effect of aggregate size to anti-penetration ability of concrete targets subjected to high-velocity fragments [J]. Acta Armamentarii, 2012, 33(8): 1009-1015.
[4] Zhang MH, Shim VPW, Liu G, et al. Resistance of high-strength concrete to projectile impact [J]. International Journal of Impact Engineering, 2005, 31: 825-841.
[5] Dancygier AN, Yankelevsky DZ, Jaegermann C. Response of high performance concrete plates to impact of non-deforming projectiles [J]. International Journal of Impact Engineering, 2007, 34: 1768-1779.
[6] Sovják R, Vavriník T, Máca P, et al. Experimental investigation of ultra-high performance fiber reinforced concrete slabs subjected to deformable projectile impact[J]. Procedia Engineering, 2013, 65: 120-125.
[7] Lai JZ, Guo XJ, Zhu YY. Repeated penetration and different depth explosion of ultra-high performance concretes [J]. International Journal of Impact Engineering, 2015, 84: 1-12.
[8] 蒋志刚, 甄明, 刘飞等. 钢管约束混凝土抗侵彻机理的数值模拟 [J]. 振动与冲击, 2015, 34(11): 1-6.
Jiang ZG, Zhen M, Liu F, et al. Simulation of anti-penetration mechanism of steel tube confined concrete [J]. Journal of Vibration and Shock, 2015, 34(11): 1-6.
[9] 甄明, 蒋志刚, 万帆等. 钢管约束混凝土抗侵彻性能试验 [J]. 国防科技大学学报, 2015, 37(3): 121-127.
Zhen M, Jiang ZG, Wan F, et al. Steeltube confined concrete targets penetration experiments [J]. Journal of National University of Defensee Technology, 2015, 37(3): 121-127.
[10] Wan F, Jiang ZG, Tan QH, et al. Response of steel-tube-confined concrete targets to projectile impact [J]. International Journal of Impact Engineering, 2016, 94: 50-59.
[11] 蒋志刚, 万帆, 谭清华等. 钢管约束混凝土抗多发打击试验 [J]. 国防科技大学学报, 2016, 38(3): 117-123.
Jiang ZG, Wan F, Tan QH et al. Mult-hit experiments of steel-tube-confined concrete targets [J] Journal of National University of Defensee Technology, 2016, 38(3): 117-123.
[12] 王起帆, 石少卿, 王征等. 蜂窝遮弹层抗弹丸侵彻实验研究 [J]. 爆炸与冲击, 2016, 36(2): 253-258.
Wang QF, Shi SQ, Wang Z, et al. Experimental study on penetration-resistance characteristics of honeycomb shelter [J]. Explosion and Shoch Waves, 2016, 36(2): 253-258.
[13] 蒙朝美. 多边形钢管约束混凝土靶抗侵彻机理研究 [D]. 长沙, 国防科学技术大学, 2016.
Meng CM. Investigation on the anti-penetration mechanisms of polygonal steel-tube-confined concrete targets [D]. Changsha, National University of Defense Technology, 2016.

PDF(1835 KB)

794

Accesses

0

Citation

Detail

段落导航
相关文章

/