一种摆式球形机器人水中俯仰运动的稳定控制方法

李艳生1,杨美美1,孙汉旭2,刘志民2,张毅1

振动与冲击 ›› 2018, Vol. 37 ›› Issue (13) : 149-154.

PDF(1371 KB)
PDF(1371 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (13) : 149-154.
论文

一种摆式球形机器人水中俯仰运动的稳定控制方法

  • 李艳生1,杨美美1,孙汉旭2,刘志民2,张毅1
作者信息 +

A stability control method for pitching motion in water of a pendulum type spherical robot

  • LI Yansheng 1  YANG Meimei 1  SUN Hanxu2  LIU Zhimin 2  ZHANG Yi1
Author information +
文章历史 +

摘要

摆式球形水下机器人利用内部俯仰摆与中心螺旋桨相互配合可实现机器人在水中的上升和下潜运动,但是俯仰摆的频繁摆动会引起机器人速度波动,降低了系统稳定性。针对该种机器人俯仰驱动特点,提出了一种两级滑模方法来同时控制机器人俯仰角和俯仰摆的摆动角,引入RBF神经网络对干扰项进行自适应补偿。在理论上证明了设计的控制器是稳定的,仿真和实验结果也表明提出的控制方法可以实现机器人俯仰角的快速控制,并且能够对俯仰摆的频繁摆动进行有效抑制,提高了该种机器人水中运动的稳定性。

Abstract

In a pendulum type spherical robot, its internal pitching pendulum and the central propeller mutually cooperate to realize its ascending and submersible motion in water. But the pitching pendulum’s frequent swing may cause the robot’s speed fluctuating and reduce the system’s stability. Aiming at the robot’s pitch-driven characteristics, a two-stage sliding mode method was proposed to simultaneously control the robot’s pitch angle and the pendulum’s swing angle, a RBF neural network was introduced to adaptively compensate interference terms. The controller designed was proved to be stable theoretically. The results of simulation and test showed that the proposed control method can realize the rapid control of the robot’s pitch angle, and can effectively suppress frequent swing of the pitching pendulum, so the stability of the robot’s motion in water is improved.


关键词

球形机器人 / 无人水下航行器 / 自适应控制 / 滑模控制

Key words

spherical robot / unmanned underwater vehicle / adaptive control / sliding mode control

引用本文

导出引用
李艳生1,杨美美1,孙汉旭2,刘志民2,张毅1. 一种摆式球形机器人水中俯仰运动的稳定控制方法[J]. 振动与冲击, 2018, 37(13): 149-154
LI Yansheng 1 YANG Meimei 1 SUN Hanxu2 LIU Zhimin 2 ZHANG Yi1. A stability control method for pitching motion in water of a pendulum type spherical robot[J]. Journal of Vibration and Shock, 2018, 37(13): 149-154

参考文献

[1] Houston S, Pkwy S. Remotely Operated Vehicles of the World-9th Edition[M]. USA:Oilfield Publications Limited 2000.
[2] LIN Xichuan, GUO Shuxiang. Development of a spherical underwater robot equipped with multiple vectored water-jet-based thrusters[J]. Journal of Intelligent and Robotic Systems .2012,67(3):307-321.
[3] Guo S, Du J, Ye X, et al. The computational design of a water jet propulsion spherical underwater vehicle[C]. IEEE International Conference on Mechatronics and Automation. IEEE, 2011:2375-2379.
[4] Guo S, Du J, Lin X, et al. Adaptive fuzzy sliding mode control for spherical underwater robots[C]. IEEE International Conference on Mechatronics and Automation, IEEE, 2012:1681-1685.
[5] Wan F, Guo S, Ma X, et al. Characteristic analysis on land for an amphibious spherical robot[C]. IEEE International Conference on Mechatronics and Automation. IEEE, 2014:1945-1950.
[6] Wang Z, Guo S, Shi L, et al. The application of PID control in motion control of the spherical amphibious robot[C]. IEEE International Conference on Mechatronics and Automation. IEEE, 2014:1901-1906.
[7] 兰晓娟,孙汉旭,贾庆轩,李红义. 一种新型水下球形机器人的旋转运动分析, 高技术通讯[J]. 2010, 20(9):944-949.
Lan Xiao-juan, Sun Han-xu, Jia Qing-xuan, Li Hong-yi. Rotational motion analysis of a new–type spherical underwater vehicle[J]. Chinese High Technology Letters, 2010,20(9):944-949.
[8] LAN Xiao-juan, SUN Han-xu, JIA Qing-xuan. The hydrodynamic analysis for the underwater robot with a spherical hull [C]. Proceedings of SPIE - The International Society for Optical Engineering, Space Exploration Technologies II, Orlando, USA, 2009: 73310E-1-73310E-8.
[9] 刘志民,孙汉旭,贾庆轩,等. 水下球形探测机器人的有限时间点镇定控制[J]. 机器人,2016,38(05):569-577.
Liu Z, Sun H, Jia Q, et al. Finite-time Point Stabilization Controller for an Underwater Spherical Exploring Robot [J]. Robot, 2016, 38(05):569-577.
[10] 李艳生,孙汉旭,贾庆轩,张延恒,褚明. 一种摆式球形水下机器人水底滚动特性分析[J]. 中南大学学报(自然科学版),2016,47(11):3664-3669.
Li Yansheng, Sun Hanxu, Jia Qingxuan, et al. Analysis of rolling characteristics at water bottom for spherical robot with heavy pendulums[J]. Journal of Central South University, 2016 ,47(11):3664-3669.
[11] 郑一力, 孙汉旭. 带高速旋转飞轮的球形机器人结构设计与运动稳定性分析[J]. 机械工程学报, 2013, 49(3):36-41.
Zheng Yi-li, Sun Han-xu. Mechanical design and motion stability analysis of a spherical robot equipped with high-rate flywheel [J]. Journal of Mechanical Engineer, 2013, 49(3):36-41
[12] 赵伟, 孙汉旭, 贾庆轩,等. 具有两种运动模式的球形机器人动力学建模与设计[J]. 吉林大学学报:工学版, 2013, 43(5):1386-1394.
Zhao Wei, Sun Han-xu, Jia Qing-xuan, Zhang Yan-heng, Yu tao. Mechanical analysis and optimal design about a kind of spherical mobile robot with two moving modes[J]. Journal of Jilin University (Engineering and Technology Edition), 2013, 43(5):1386-1394.
[13] 庄未, 刘晓平, 孙汉旭. 基于惯性测量单元的欠驱动球形机器人惯性参数辨识[J]. 吉林大学学报(工学版), 2011, 41(4):1119-1125.
Zhuang Wei, Liu Xiao-ping, Sun Han-xu. Method for identifying inertial parameters of underactuated spherical robot based on inertial measurement unit[J]. Journal of Jilin University (Engineering and Technology Edition), 2011, 41(4):1119-1125.
[14] 兰晓娟, 孙汉旭, 贾庆轩. 水下球形机器人BYSQ_2的原理与动力学分析 [J]. 北京邮电大学学报, 2010, 33 (3): 20-23.
Lan Xiao-juan, Sun Han-xu, Jia Qing-xuan. Principle and dynamic analysis of a new-type spherical underwater vehicle[J]. Journal of Beijing University of Posts and Telecommunications, 2010, 33(3): 20-23.
[15] 高丙团, 陈宏钧, 张晓华. 龙门吊车系统的动力学建模[J]. 计算机仿真, 2006, 23(2): 50-109.
Gao Bing-tuan, Chen Hong-jun, Zhang Xiao-hua. Dynamic modeling of a gantry crane system[J]. Computer Simulation, 2006, 23(2): 50-109.
[16] Graver J G. Underwater gliders: dynamics, control and design[D]. New Jersey: Princeton University, 2005.
[17] 周莎,张伟,于天俊,杨晓东.横摇和纵摇非线性耦合下船舶运动的全局动力学[J]. 振动与冲击, 2017, 36(4): 214-217.
ZHOU Sha, ZHANG Wei, YU Tian-jun, YANG Xiao-dong. Global dynamics of ship motions considering the nonlinear coupling between pitch and roll modes. JOURNAL OF VIBRATION AND SHOCK, 2017, 36(4): 214-217.
[18] 王芳荣, 阚如文, 王昕, 刘顺安, 董绪斌. 无人水下航行器PID神经网络解耦控制[J]. 吉林大学学报(工学版), 2012, 42(sup1):387-391.
Wang Fang-rong, Kan Ru-wen, Wang Xin, Liu Shun-an, Dong Xu-bin. PID neural network decoupling control of unmanned underwater vehical[J]. Journal of Jilin University (Engineering and Technology Edition), 2012, 42(sup1):387-391.
[19] Yu X, Wu Z. Corrections to “Stochastic Barbalat's Lemma and Its Applications”[J]. IEEE Transactions on Automatic Control, 2014, 59(5):1386-1390.

PDF(1371 KB)

Accesses

Citation

Detail

段落导航
相关文章

/