柔性膜结构风致振动中的流固耦合效应研究

孙芳锦1,2,毕鹏2,吕艳卓2

振动与冲击 ›› 2018, Vol. 37 ›› Issue (13) : 155-160.

PDF(1406 KB)
PDF(1406 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (13) : 155-160.
论文

柔性膜结构风致振动中的流固耦合效应研究

  • 孙芳锦1,2,毕鹏2,吕艳卓2
作者信息 +

Wind-induced fluid-structure interaction effect in flexible membrane structures

  • SUN Fangjin1,2,   BI Peng2,   LV Yanzhuo2
Author information +
文章历史 +

摘要

本文研究了采用强耦合整体方程计算柔性膜结构风致流固耦合效应的求解问题。针对柔性膜结构经历大变形的特性,在经典投影法的校正步中引入修正因子使在原始动量方法中隐性定义的压力初始边界条件得到满足,以此克服经典投影法对于大变形问题的缺陷。文中给出了针对强耦合整体方程的修正校正法求解过程,并推导了相关求解方程。将该方法应用于二维流固耦合问题和三维柔性膜结构风致流固耦合作用进行计算,评估了本文修正投影法的性能和效率。结果表明修正投影法可以用于柔性膜结构的风致流固耦合计算,且其计算精度和效率要高于传统求解方法。修正投影法的修正值对于结果的影响不大,而计算迭代次数是影响结果的重要因素。修正投影法可以通过增加迭代次数的方法较大幅度的提高计算精度,且计算机时增加相对较少,计算稳定性不受影响。

Abstract

Here, the problem of wind-induced fluid-structure interaction effect of flexible membrane structures was solved using the strongly coupled monolithic equation. Aiming at the large deformation feature of membrane structures, a modified factor was introduced into the corrector step of the classical projection method to satisfy initial pressure boundary conditions implicitly defined in the original momentum method, and overcome defects of the classical projection method to large-deformation problems. The solving process of the strongly coupled monolithic equation with the modified projection method was presented, and the relevant solving equations were derived. This method was applied to calculate a 2-D fluid-structure interaction problem and wind-induced fluid-structure interaction effect of a 3-D flexible membrane structure. The performance and efficiency of the proposed modified projection method were evaluated. The results showed that the proposed modified projection method can be used to compute the wind-induced fluid-structure interaction effect of flexible membrane structures, its computation accuracy and efficiency are higher than those of the traditional methods; its modification value has little effects on the results while the number of iterations is an important factor to affect the results; its computation accuracy can be improved significantly by increasing the number of iterations with less increase in computation time and no effects on the computation stability.

Key words

  / flexible membranous structures, wind-induced fluid-structure interaction, strongly coupled monolithic equation, projection method

引用本文

导出引用
孙芳锦1,2,毕鹏2,吕艳卓2. 柔性膜结构风致振动中的流固耦合效应研究[J]. 振动与冲击, 2018, 37(13): 155-160
SUN Fangjin1,2, BI Peng2, LV Yanzhuo2. Wind-induced fluid-structure interaction effect in flexible membrane structures[J]. Journal of Vibration and Shock, 2018, 37(13): 155-160

参考文献

[1] Hermann G. Matthies, Jan Steindorf(2003). “Partitioned strong coupling algorithms for fluid–structure interaction”. Computers & Structures 81(8-11),805-812
[2] Degroote. J., Bathe.K.J., Vierendeels J.(2009), “Performance of a new partitioned procedure versus a monolithic procedure in fluid–structure interaction”. Computers & Structures, 87(11-12), 793-801
[3] Habchi.C.,Russeil.S., Bougeard D.(2013), “Partitioned solver for strongly coupled fluid–structure interaction”. Computers & Fluids, 71(306-319)
[4] Borna, A. , Habashi, W.G., McClure, G. and Nadarajah, S.K. (2013), “CFD-FSI simulation of vortex-induced vibrations of a circular cylinder with low mass-damping”, Wind and Structures, 16(5), 411-431.
[5] Michalski, A, Haug, E., Bradatsch, J. and Bletzinger, K.U. (2009), “Virtual design methodology for lightweight structures – aerodynamic response of membrane structures”, Int. J. Space Struct., 24(4),211-221.
[6] Michalski, A., Kermel, P.D., Haug, E., Löhner, R., Wüchner, R. and Bletzinger, K.U. (2011), “Validation of the computational fluid-structure interaction simulation at real-scale tests of a flexible 29 m umbrella in natural wind flow”, J. Wind Eng. Aerod., 99(4), 400-413.
[7] Glück, M., Breuer, M., Durst, F., Halfmann, A. and Rank, E (2003), “Computation of wind-inducedvibrations of flexible shells and membranous structures”, J. Fluid. Struct., 17(5), 739-765.
[8] 武岳(2003),考虑流固耦合作用的索膜结构风致动力响应研究[D].哈尔滨:哈尔滨工业大学博士学位论文
[9] 孙晓颖. 薄膜结构风振响应中的流固耦合效应研究[D]. 哈尔滨:哈尔滨工业大学博士论文, 2007.
[10] Hachem, E., Feghali, S., Codina, R. and Coupez, T. (2013), “Anisotropic adaptive meshing and monolithic Variational Multiscale method for fluid–structure interaction”, Comput. Struct., 122, 88-100.
[11] C. Michler, S.J. Hulshoff, E.H. van Brummelen, R. de Borst (2004). A monolithic approach to fluid-structure interaction. Computers & Fluids 33:839–848
[12] Barker, A.T. and Cai, X.-C. (2010), “Scalable parallel methods for monolithic coupling in fluid–structure interaction with application to blood flow modeling”, J. Comput. Phys., 229 (3), 642-659
[13] Sun Fangjin, Gu Ming (2014), “A numerical solution to fluid-structure interaction of membrane structures under wind action”, Wind & Structures, Vol. 19, No. 1,35-58
[14] Badia, S., Quaini, A. and Quarteroni, A., (2008a), “Modular vs. non-modular preconditioners for fluid–structure systems with large added-mass effect”, Comput. Methods Appl. Mech. Engrg., 197 (49-50), 4216-4232.
[15]Badia, S., Quaini, A. and Quarteroni, A., (2008b), “Splitting methods based on algebraic factorization for fluid–structure interaction”, SIAM J. Sci. Comput., 30 (4), 1778-1805.
[16] J.L. Guermond, P. Minev, J. Shen, An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Eng. 195 (44) (2006) ,6011–6045.
[17] Turek S, Hron J, Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow. In: Bungartz H-J, Schafer M, editors, Fluid-structure interaction- modeling, simulation, optimization. Lecture notes in computational science and engineering vol.53 Berlin:Springer: 2006. p. 371-85.ISBN:3-540-34595-7.

PDF(1406 KB)

446

Accesses

0

Citation

Detail

段落导航
相关文章

/