谐振子几何结构不同导致的水表面波各向异性

杨虹 1,陈丹 1,马余全 1,彭世镠 2,毛东风3,曾双雄1,宋昀轩1,王彩霞1

振动与冲击 ›› 2018, Vol. 37 ›› Issue (13) : 161-164.

PDF(1728 KB)
PDF(1728 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (13) : 161-164.
论文

谐振子几何结构不同导致的水表面波各向异性

  • 杨虹 1,陈丹 1 ,马余全 1 , 彭世镠 2,毛东风3,曾双雄1 ,宋昀轩1 ,王彩霞1
作者信息 +

Water surface wave anisotropy phenomenon caused by harmonic oscillator’s different geometric structures

  • YANG Hong1,CHEN Dan1,MA Yuquan1,PENG Shiliu2,MAO Dongfeng3,ZENG Shuangxiong1,SONG Yunxuan1,WANG Caixia1
Author information +
文章历史 +

摘要

利用高速摄像与Tracker视频追踪技术,并结合粒子图像测速处理及数值模拟方法,研究了水波发生振子在周期性振动过程中对水面漂浮物的排斥或牵引作用及漂浮物的运动轨迹,揭示了不同几何结构的振子产生的流体表面波各向异性的现象。实验发现表面波对漂浮物的作用主要取决于振子的几何结构,具体表现为圆柱体振子对表面漂浮物只存在排斥的作用,三棱柱振子在棱柱角的对应方向上对漂浮物存在定向牵引作用且在其他方向上存在排斥作用。进一步研究表明振子几何结构的不同致使其对水表面漂浮物既有排斥也有定向牵引,导致表面波对漂浮物的排斥或牵引现象在不同的波线上呈现各向异性。

Abstract

A high speed video camera and the software Tracker were used and combined with the particle image velocimetry technique and the numerical simulation method to study a water wave generator’s repulsion or traction to floating objects on water surface in its periodic oscillation process and motion trajectory of floating objects, and to reveal water surface wave anisotropy phenomenon caused by different resonator structures. The experiment results showed that the action of surface wave on floating objects mainly depends on oscillator’s geometric structure; a cylindrical oscillator only has a repulsive action on floating objects, but a tri-prism oscillator has a directional traction action on floating objects along   the direction corresponding to the prism angle, and a repulsive action along other directions; different geometric structures of oscillators make their actions on floating objects be not only repulsive but also directional tractive, these actions cause water surface wave along different wave lines is anisotropic.

关键词

水表面波 / 定向牵引 / 粒子图像测速 / 数值模拟

Key words

water surface wave / directional traction / particle image velocimetry / numerical simulation

引用本文

导出引用
杨虹 1,陈丹 1,马余全 1,彭世镠 2,毛东风3,曾双雄1,宋昀轩1,王彩霞1. 谐振子几何结构不同导致的水表面波各向异性[J]. 振动与冲击, 2018, 37(13): 161-164
YANG Hong1,CHEN Dan1,MA Yuquan1,PENG Shiliu2,MAO Dongfeng3,ZENG Shuangxiong1,SONG Yunxuan1,WANG Caixia1. Water surface wave anisotropy phenomenon caused by harmonic oscillator’s different geometric structures[J]. Journal of Vibration and Shock, 2018, 37(13): 161-164

参考文献

[1] Hogan S J. Particle trajectories in nonlinear gravity-capillary waves[J].Journal of Fluid Mechanics, 1984, 143(143):243-252.
[2] 吴云岗,陶明德. 水波动力学基础[M].上海:复旦大学出版社, 2011.
   Wu Y G, Tao M D. Base of water wave dynamics[M]. Shanghai: Fudan University Press, 2011.
[3] 王玮,浦群,林同骥. 低Re数偏心圆柱间定常整流流动[J]. 水动力学研究与进展,1993,8(2):172-175.
    Wang W, Pu Q, Lin T J. Low Re steady streaming flow between two eccentric circular cylinders[J]. Journal of Hydrodynamics, 1993, 8(2):172-175.
[4] 钟万勰,姚征. 位移法浅水孤立波[J]. 大连理工大学学报,2006, 46(1):151-156.
    Zhong W X, Yao Z. Shallow water solitary waves based on displacement method[J]. Journal of Dalian University of Technology, 2006, 46(1):151-156.
[5] Punzmann H, Francois N, Xia H, et al. Generation and reversal of surfaceflows bypropagating waves[J]. Nature Physics, 2014, 10(8):658–663.
[6] Constantin A. On the deep water wave motion[J]. Journal of Physics A, 2001, 34:1405-1417.
[7] Matioc A-V. On particle trajectories in linear water waves[J]. Nonlinear AnalReal World Applications,2010,11(5):4275-4284.
[8] Xia H, Shats M, Punzmann H. Modulation instability and capillary wave Turbulence[J]. Europhysics Letters, 2010,91(1):14002.
[9]Von K A, Huhn F, Fernándezgarcía G, et al. Double cascade turbulence and Richardson dispersion in a horizontal fluid flow induced by Faraday waves[J]. Physical Review Letters, 2011, 107(7): 074502.
[10] Xia, H. , Shats, M. Propagating solitons generated by localized perturbations on the surface of deep water[J]. Physical Review E, 2012, 85(2 Pt 2):026313.
[11] 杨虹,彭世镠,毛东风等. 特定结构振源振动时流体表面波的定向吸引作用[J].石油勘探与开发, 2016,43(5):816-819.
    Yang H, Peng S L, Mao D F, et al. Directional attraction of fluid surface wave caused by vertically oscillating prisms[J]. Petroleum Exploration and Development, 2016, 43(5):816-819.
[12] Wang Z Y, Zhang P, Nie X F, et al. Focusing of liquid surface waves by gradient index lens[J]. Europhysics Letters, 2014, 108(2):24003.
[13] Wang Z Y, Zhang P, Nie X F, et al. Manipulating Water Wave Propagation via Gradient Index Media[J].  Scientific Reports, 2015, 5:16846.
[14] Wang Z Y, Nie X F, Zhang P. Unidirectional transmission of water waves through a one-dimensional combination immersed system[J]. Physica Scripta, 2014, 89(9):095201.
[15] 张阿漫,戴绍文.流固耦合动力学[M].北京:国防工业出版,2011.
    Zhang A M, Dai Z W. Fluid-structure interaction dynamics [M]. Beijing: National Defence Industry Press, 2011.
[16] 邹志利.水波理论及其应用[M].北京:科学出版社,2005.
    Zou Z L. Water wave theory and its application [M]. Beijing: Science Press, 2005.
[17] 孙涛,陶建华. 波浪作用下近岸区污染物输移扩散的数学模型及其实验验证[J].海洋学报,2003, 25(3):1-9.
    Sun T, Tao J H. Numerical modeling and experimental verification of pollutant transport under waves in the near shore zone[J]. Acta Oceanologica Sinica, 2003, 25(3):1-9.
[18] 戴遗山,段文洋. 船舶在波浪中运动的势流理论[M].北京:国防工业出版,2008.
    Dai Y S, Duan W Y. Potential flow theory of ship motion in waves [M]. Beijing: National Defence Industry Press, 2008.
[19] 陈艳霞,陈磊.ANSYS Workbench工程应用案例精通[M].北京:电子工业出版社,2012.
    Chen Y X, Chen L. ANSYS Workbench Engineering application case proficiency [M]. Beijing: Publishing House of Electronics Industry, 2012.
[20] 陶建华. 水波的数值模拟[M]. 天津:天津大学出版社,2005.
    Tao J H. Numerical simulation of water waves[M]. Tianjin: Tianjin University Press, 2005.
 
 

PDF(1728 KB)

Accesses

Citation

Detail

段落导航
相关文章

/