巷道内I型及I/II复合型裂纹在冲击载荷作用下的断裂行为分析

周磊,朱哲明,应鹏,王雄,王蒙

振动与冲击 ›› 2018, Vol. 37 ›› Issue (13) : 210-217.

PDF(1648 KB)
PDF(1648 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (13) : 210-217.
论文

巷道内I型及I/II复合型裂纹在冲击载荷作用下的断裂行为分析

  • 周磊,朱哲明,应鹏,王雄,王蒙
作者信息 +

Fracture behavior analysis for mode I and multi-mode I / II cracks in a tunnel under impact loads

  • ZHOU Lei, ZHU Zhe-ming, YING Peng, WANG Xiong, WANG Meng
Author information +
文章历史 +

摘要

本文研究了巷道内纯I型及I/II复合型裂纹在冲击载荷作用下的动态扩展特征,预制裂纹位于巷道拱顶圆弧区域与巷道对称轴线平行,并与巷道对称轴线的间距不同。以中低速落锤冲击试验机对砂岩巷道模型试样进行动态冲击加载,巷道内裂纹的起裂时间与扩展特性采用粘贴在裂纹尖端的应变片进行相应的测试分析。采用AUTODYN模拟巷道内裂纹的扩展路径,总体上数值结果与试验结果比较吻合,采用ABAQUS计算裂纹的应力强度因子,结合试验-数值法确定巷道模型内预制裂纹的起裂韧度。研究结果表明:I/II复合型裂纹起裂过程中,既有I型起裂韧度又有II型起裂韧度,其比例大小与裂纹距离巷道对称轴的距离有关;纯I型与I/II复合型裂纹的扩展行为有很大差别,纯I型裂纹起裂沿着原裂纹方向竖直向上扩展,而I/II复合型裂纹与原裂纹成一定角度起裂,形成翼型裂纹,最后沿着最大主应力方向进行扩展,并且复合型裂纹在扩展过程中,存在明显的拐点特征。

Abstract

Here, the dynamic propagation behavior of mode I and multi-mode I / II cracks in a tunnel under impact loads was investigated. A pre-crack was placed in a tunnel arch arc region and parallel to the symmetrical axis line of the tunnel. The ratio of the distance between the pre-crack and the symmetrical axis to the radius of the tunnel arch arc was in the range of 0~1. The dynamic impact tests of a sandstone tunnel model with a pre-crack were conducted with a middle-low speed drop weight impact test system. The crack initiation time and the propagation characteristic of the pre-crack were measured with strain gauges stuck at tips of the pre-crack. The software AUTODYN was used to simulate the tunnel’s crack propagation paths, and the numerical results agreed well with the test ones. The software ABAQUS was employed to calculate the crack’s dynamic stress intensity factor. The test-numerical method was used to determine the initiation toughness of the pre-crack in the tunnel model. The study results showed that in multi-mode I / II crack initiation process, there exist both mode I initiation toughness and mode II one, and their proportion is related to the distance between the crack and the symmetrical axis of the tunnel; the propagation behaviors of mode I and multi-mode I /II cracks are quite different, mode I crack along the pre-crack direction vertically upward expands, while multi-mode I / II crack initiates at a certain angle to the original crack to form an airfoil crack, and finally it expands along the maximum principal stress direction; in the propagation process of multi-mode I/II crack, there are obvious features of an inflection point.

关键词

巷道 / 裂纹扩展 / 冲击载荷 / 数值模拟 / 起裂韧度

Key words

 tunnel / crack propagation / impact load / numerical simulation / initiation toughness

引用本文

导出引用
周磊,朱哲明,应鹏,王雄,王蒙. 巷道内I型及I/II复合型裂纹在冲击载荷作用下的断裂行为分析[J]. 振动与冲击, 2018, 37(13): 210-217
ZHOU Lei, ZHU Zhe-ming, YING Peng, WANG Xiong, WANG Meng. Fracture behavior analysis for mode I and multi-mode I / II cracks in a tunnel under impact loads[J]. Journal of Vibration and Shock, 2018, 37(13): 210-217

参考文献

[1] 倪海敏, 茅献彪, 张春, 等. 冲击载荷对巷道稳定性的影响研究[J]. 煤炭工程. 2011,1(9):84-86.
NI Haimin, MAO Xianbiao, ZHANG Chun, et al. Study on Bumping Load Affected to Mine Gateway Stability[J]. Coal Engineering, 2011,1(9):84-86.
[2] EVERITT RA, LAJTAI EZ. The influence of rock fabric on excavation damage in the Lac du Bonnett granite[J]. International Journal of Rock Mechanics & Mining Sciences. 2004,41(8):1277-1303.
[3] MALMGREN L, SAIANG D, TÖYRÄ J,  et al. The excavation disturbed zone (EDZ) at Kiirunavaara mine, Sweden—by seismic measurements[J]. Journal of Applied Geophysics. 2008,61(1):1-15.
[4] MARTINO J B, CHANDLER N A. Excavation-induced damage studies at the Underground Reearch Laboratory[J]. International Journal of Rock Mechanics and Mining Sciences. 2004,41(8):1413-1426.
[5] 刘永胜, 彭立, 王梦恕, 等. 爆破作用下隧道裂纹围岩破裂范围[J]. 中国公路学报, 2015,28(10):83-89.
LIU Yongsheng, PENG Li, WANG Mengshu, et al. Blast-induced Fracture Zone of Fractured Rock -mass Tunnel[J]. China Journal of Highway and Transport, 2015,28(10):83-89.
[6] 潘一山, 吕祥锋, 李忠华,  等. 高速冲击载荷作用下巷道动态破坏过程试验研究[J]. 岩土力学. 2011,32(5):1281-1286.
PAN Yishan, Lü Xiangfeng, Li Zhonghua, et al. Experimental study of dynamic failure process of roadway under high velocity impact loading[J]. Rock & Soil Mechanics, 2011, 32(5):1281-1286.
[7] 孔德森,孟庆辉,张伟伟, 等. 爆炸荷载作用下地铁隧道的冲击反应研究[J]. 振动与冲击. 2012, 31(12):68-72.
KONG Desen, MENG Qinghui, ZHANG Weiwei, et al. Shock responses of a metro tunnel subjected to explosive loads [J].Journal of Vibration and Shock. 2012,31 (12): 68-72.
[8] 孔德森,孟庆辉,史明臣,等. 爆炸冲击波在地铁隧道内的传播规律研究[J]. 地下空间与工程学报. 2012, 08(1):863-868.
KONG Desen, MENG Qinghui, SHI Mingchen, the dissemination rule of blasting shock-wave in subway tunnel[J].Chinese Journal of Underground Space and Engineering. 2012,08 (1): 863-868.
[9] ZHU Z, LI Y, XIE J, et al. The effect of principal stress orientation on tunnel stability[J]. Tunnelling and Underground Space Technology. 2015,49:279-286.
[10] ZHU Z, MOHANTY B, XIE H. Numerical investigation of blasting-induced crack initiation and propagation in rocks[J]. International Journal of Rock Mechanics & Mining Sciences. 2007,44(3):412-424.
[11] ZHU Z, XIE H, MOHANTY B. Numerical investigation of blasting-induced damage in cylindrical rocks[J]. International Journal of Rock Mechanics & Mining Sciences. 2008,45(2):111-121.
[12] WANG Q Z, FENG F, NI M, et al. Measurement of mode I and mode II rock dynamic fracture toughness with cracked straight through flattened Brazilian disc impacted by split Hopkinson pressure bar[J]. Engineering Fracture Mechanics. 2011,78(12):2455-2469.
[13] WANG Q Z, XING L. Determination of fracture toughness K IC by using the flattened Brazilian disk specimen for rocks[J]. Engineering Fracture Mechanics. 1999,64(2):193-201.
[14] WANG Q Z, YANG J R, ZHANG C G, et al. Sequential determination of dynamic initiation and propagation toughness of rock using an experimental–numerical–analytical method[J]. Engineering Fracture Mechanics. 2015,141:78-94.
[15] ZHANG Q B, ZHAO J. Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads[J]. International Journal of Rock Mechanics & Mining Sciences. 2013,60(8):423-439.
[16] ZHANG Q B, ZHAO J. A Review of Dynamic Experimental Techniques and Mechanical Behaviour of Rock Materials[J]. Rock Mechanics and Rock Engineering. 2014,47(4):1411-1478.
[17] Wang M, Zhu Z, Dong Y, et al. Study of mixed-mode I/II fractures using single cleavage semicircle compression specimens under impacting loads[J]. Engineering Fracture Mechanics, 2017:33–44.
[18] 王蒙, 朱哲明, 王雄. 冲击荷载作用下的Ⅰ/Ⅱ复合型裂纹扩展规律研究[J]. 岩石力学与工程学报. 2016,35(7):1323-1332.
WANG Meng, ZHU Zheming, WANG Xiong. The growth of mixed-mode I / II under impacting loads[J]. Journal of Rock Mechanics and Engineering. 2016,35 (7):1323-1332.
[19] 王蒙, 朱哲明, 谢军. 岩石I–II复合型裂纹动态扩展SHPB实验及数值模拟研究[J]. 岩石力学与工程学报. 2015,34(12):2474-2485.
WANG Meng, ZHU Zheming, XIE Jun. Experimental and numerical studies of the mixed-mode I and II crack propagation under dynamic loading using SPHB[J]. Journal of Rock Mechanics and Engineering. 2015,34. (12): 2474-2485.
[20] MA G W, HAO H, ZHOU Y X. Modeling of wave propagation induced by underground explosion[J]. Computers & Geotechnics. 1998,22(3–4):283-303.
[21] ZHU Z, WANG C, KANG J, et al. Study on the mechanism of zonal disintegration around an excavation[J]. International Journal of Rock Mechanics & Mining Sciences. 2014,67(4):88–95.
[22] HU R, ZHU Z, XIE J, et al. Numerical Study on Crack Propagation by Using Softening Model under Blasting[J]. Advances in Materials Science & Engineering. 2015,2015:1-9.
[23] 解德. 断裂力学中的数值计算方法及工程应用[M].科学出版社, 2009:135-140.
XIE De. Numerical methods and applications in fracture mechanics[M]. Science Press, 2009:135-140.
[24] XIA K, YAO W. Dynamic rock tests using split Hopkinson (Kolsky) bar system-A review[J]. Journal of Rock Mechanics & Geotechnical Engineering. 2015,7(1):27-59.
[25] 周磊, 朱哲明, 刘邦. 隧道周边不同位置径向裂纹对隧道围岩稳定性影响规律的研究[J]. 岩土工程学报. 2016,38(7):1230-1237.
ZHOU Lei, ZHU Zheming, LIU Bang.Influence of radial cracks on stability of surrounding rocks at different locations around tunnel[J]. Chinese Journal of Geotechnical Engineering. 2016,38(7):1230-1237.
[26] 李元鑫, 朱哲明, 刘凯, 等. 裂纹方向对隧道稳定性影响规律的研究 [J].岩土力学. 2014,35(增刊1): 189-194.
LI Yuanxin, ZHU Zheming, LIU Kai, et al. Study of effect of cracking orientation on tunnel stability [J]. Rock and Soil Mechanics, 2014, 35(S1): 189-194.
[27] JIANG F, VECCHIO K S. Hopkinson Bar Loaded Fracture Experimental Technique: A Critical Review of Dynamic Fracture Toughness Tests[J]. Applied Mechanics Reviews. 2009,62(6):1469-1474.
[28] ZHANG Q B, ZHAO J. Effect of loading rate on fracture toughness and failure micromechanisms in marble[J]. Engineering Fracture Mechanics. 2013,102(2):288-309.
[29] 范天佑. 断裂动力学原理与应用[M]. 北京:北京理工大学出版社; 2006:24-35.
FAN Tianyou. Principle and Application of Fracture Dynamics [M].Beijing: Beijing Institute of Technology Press. 2006:24-35.
[30] CHEN Y M. Numerical computation of dynamic stress intensity factors by a Lagrangian finite-difference method (the HEMP code)[J]. Engineering Fracture Mechanics. 1975,7(4):653-660.
[31] ROSE LRF. Recent theoretical and experimental results on fast brittle fracture [J]. International Journal of Fracture. 1976, 12(6):799-813.
[32] RAVI-CHANDAR K. Dynamic Fracture [M].Elseviser, 2004: 49-69.

PDF(1648 KB)

Accesses

Citation

Detail

段落导航
相关文章

/