一种考虑钢材硬化各向同性的失效准则在船舶碰撞数值仿真中的应用

赵百惠1,3,胡志强1,2,陈刚4

振动与冲击 ›› 2018, Vol. 37 ›› Issue (13) : 27-34.

PDF(1399 KB)
PDF(1399 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (13) : 27-34.
论文

一种考虑钢材硬化各向同性的失效准则在船舶碰撞数值仿真中的应用

  • 赵百惠1,3,胡志强1,2,陈刚4
作者信息 +

Application of a BWH-based fracture failure criterion of steel material in numerical simulation of ship collision scenarios

  • ZHAO Baihui1, 3  HU Zhiqiang1, 2  CHEN Gang4
Author information +
文章历史 +

摘要

随着计算机技术的迅速发展,采用有限元数值仿真技术对船舶碰撞与搁浅场景进行研究,已经可以提供较为可靠准确的模拟结果,并且具有节省时间、人力与成本的优势。但是,如何合理定义钢板材料的断裂失效准则,是有限元技术中一个十分重要的问题。本文基于BWH失效准则理论假设,推导出一套适用于考虑硬化的各向同性材料失效准则公式,并利用LS-DYNA程序进行二次开发编程,将此准则嵌入LS-DYNA程序中。之后,利用更新的LS-DYNA程序,以一个船舶搁浅模型试验为例,进行有限元数值仿真计算,通过与实验结果对比,验证所提出的钢板材料失效准则的适用性。

Abstract

With the rapid development of computer technology, finite element numerical simulation technology is used to study ship collision and grounding scenarios to provide more reliable and accurate simulation results, it has the advantages of saving time, manpower and cost. How to reasonably define the fracture failure criterion of steel plates is a very important problem in finite element technology. Here, based on the BWH failure criterion, a set of formulas for the failure criterion of isotropic materials considering hardening was proposed and coded using the LS-DYNA program as its secondary development. The code of this new criterion was embedded in the LS-DYNA program. Then, using the updated LS-DYNA program, a finite element numerical simulation was performed for an example of ship-grounding model test. Comparing the numerical simulation results with those of the model test, the applicability of the proposed steel plate failure criterion was validated.

关键词

船舶搁浅与碰撞 / 有限元方法 / 钢材失效准则 / BWH / LS-DYNA

Key words

ship grounding and collision / finite element method / material failure criteria / BWH / LS-DYNA

引用本文

导出引用
赵百惠1,3,胡志强1,2,陈刚4. 一种考虑钢材硬化各向同性的失效准则在船舶碰撞数值仿真中的应用[J]. 振动与冲击, 2018, 37(13): 27-34
ZHAO Baihui1, 3 HU Zhiqiang1, 2 CHEN Gang4. Application of a BWH-based fracture failure criterion of steel material in numerical simulation of ship collision scenarios[J]. Journal of Vibration and Shock, 2018, 37(13): 27-34

参考文献

[1] Storheim M, Alsos HS, Hopperstad OS, Amdahl J. A damage-based failure model for coarsely meshed shell structures[J]. International Journal of Impact Engineering 2015, 83:59–75.
[2] Kitamura O. FEM approach to the simulation of collision and grounding damage[J]. Marine Structures, 2002, 15 (4–5), 403–428.
[3] AbuBakar A, Dow RS. Simulation of ship grounding damage using the finite element method[J]. International Journal of Solids and Structures, 2013, 50: 623–636.
[4] Alsos HS, Amdahl J, et al. On the resistance to penetration of stiffened plates, Part II: Numerical analysis[J]. International Journal of Impact Engineering, 2009, 36 (7): 875–887.
[5] HillR. On discontinuous plastic states with special reference to localized necking in thin sheets [J]. Journal of Mechanics and Physics of Solids,1952, 1:19–30.
[6]Törnqvist R. Design of crashworthy ship structures [D].Copenhagen: DTU, 2003.
[7]刘敬喜,崔濛,龚榆峰.船舶碰撞仿真失效准则比较[J].中国舰船研究,2015,04:79-85.
LIU Jing-xi, CUI Meng, GONG Yu-feng. A comparative study of failure criteria in ship collision simulations [J]. Chinese Journal of Ship Research, 2015, 04:79-85.
[8] StoughtonT B. Stress-based forming limits in sheet metal forming [J]. Journal of Engineering Materials and Science, 2001, 123:417–422.
[9] 秦洪德,纪肖,申静. 船舶碰撞研究综述[C]//船舶力学学术委员会、《中国造船》编辑部.2009年船舶结构力学学术会议暨中国船舶学术界进入ISSC30周年纪念会论文集. 南京:船舶力学学术委员会、《中国造船》编辑部,2009. 196-210.
QIN Hong-de, JI Xiao, SHEN Jing.Review of ship collision [C]//Academic Committee of Ship Mechanics, Editorial Department of China Shipbuilding Industry. 2009 Symposium on Ship Structural Mechanics and Chinese Ship Academies' Commemoration of the 30th Anniversary of ISSC. Nanjing: Academic Committee of Ship Mechanics, Editorial Department of China Shipbuilding Industry, 2009. 196-210.
[10] Keeler S P, Backofen, W A. Plastic instability and fracture in sheets stretched over rigid punches[J]. Transactions ASM,1963, 56 (1):25–48.
[11] Alsos HS, Hopperstad OS, Törnqvist R, Amdahl J. Analytical and numerical analysis of sheet metal instability using a stress based instability criterion[J]. International Journal of Solids and Structures, 2008, 45:2042–2055.
[12] Arrieux R, BedrinC, BoivinM. Determination of an intrinsic forming limit stress diagram for isotropic metal sheets [C].  Proceedings of the 12th Biennial Congress IDDRG. 1982. 61–71
[13] StoughtonT B, Zhu X. Review of theoretical models of the strain-based FLD and their relevance to the stress-based FLD[J]. International Journal of Plasticity, 2004, 20:1463–1486.
[14] JieM, Cheng C H, et al.Forming limit diagrams of strain-rate-dependent sheet metals[J]. International Journal of Mechanical Sciences, 2009, 51 (4):269–275.
[15] MarinatosJN, Samuelides M. Towards a unified methodology for the simulation of rupture in collision and grounding of ships [J]. Marine Structures, 2015, 42:1–32.
[16] Atkins A G. Fracture in forming [J]. Journal of Materials Processing Technology, 1996, 56:609–618.
[17] Hogström P, Ringsberg JW, Johnson E. An experimental and numerical study of the effects of length scale and strain state on the necking and fracture behaviors in sheet metals [J]. International Journal of Impact Engineering, 2009, 36(10-11):1194–1203.
[18]BressanJ D, Williams J A. Use of a shear instability criterion to predict local necking in sheet metal deformation [J]. International Journal of Mechanical Sciences, 1983, 25:155–168.
[19] Naik V K, Mohindra A, Bantz D F. An Architecture for the Coordination of System Management Service [J]. IBM Systems Journal, 2004, 43(1):78–96.
[20]Rodd J L. Observations on conventional and advanced double hull groundingexperiments [C]//International Conference on Designs and Methodologies for Collision andGrounding Protection of Ships, 1996,13.11–13.13.
[21] Simonsen B C. Mechanics of ship grounding [D]. Copenhagen: DTU, 1997a.
 

PDF(1399 KB)

682

Accesses

0

Citation

Detail

段落导航
相关文章

/